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Golden eagles Aquila chrysaetos are a long-lived and wide-ranging species believed to 
be stable or in slight decline across North America. Golden eagles have an extended 
subadult stage (4–5 years) that is critical to maintaining recruitment into the breeding 
population and population viability. Compared to adult golden eagles, the ecology of 
subadult golden eagles (hereafter, subadults) has received little attention. We investi-
gated patterns of resource selection for subadults in the Great Basin Desert of the west-
ern United States during summer and winter, 2013–2019. We monitored 46 subadults 
with GPS transmitters and related locations (n = 99 037) with predictors hypothe-
sized to influence seasonal patterns of space use with mixed-effects logistic regression. 
Subadults selected for ridges and upper slopes in summer and winter, but higher eleva-
tions in summer. Subadults showed weak selection for lower ridge density in summer, 
which was likely facilitated by selection for areas with greater thermal wind current 
potential. In contrast, subadults showed strong selection for higher ridge density in 
winter. Subadults selected areas further from roads in summer and closer to roads and 
electrical transmission lines in winter, which may be related to winter scavenging of 
road-killed ungulates. Resource selection functions suggested subadults selected for 
shrublands and woodlands in both seasons, but odds ratios revealed that during winter 
subadults avoided shrublands and increased selection of woodlands relative to summer. 
Subadults selected for areas with infrequent fires in both seasons; areas with frequent 
fires were avoided in summer but selected for in winter. Seasonal changes in resource 
selection suggested that subadults used woodlands more than expected, potentially 
reflecting spatial partitioning by subadults to lower-quality habitats to minimize com-
petition with breeding adults during winter when energetic demands for thermoregu-
lation were presumably higher and prey more limited.
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Introduction

Understanding how species select habitat features is critical 
to making informed land management decisions for species 
conservation (Johnson 1980, Manly et al. 2002). Habitat 
selection by a species may change over time, owing to 
anthropogenic disturbances (Whitfield et al. 2007), shifting 
resource availability (Crandall et al. 2015), environmental 
conditions (e.g. seasonal temperatures; Marzluff et al. 1997, 
Braham et al. 2015) or life-stage requirements (Webber et al. 
2013). For widespread species, patterns of habitat use may 
vary among ecoregions and it is important for managers to 
evaluate patterns of selection at spatial scales that reflect man-
agement (Crandall et al. 2015).

Golden eagles Aquila chrysaetos are long-lived, wide-rang-
ing apex predators that occur throughout a Holarctic distri-
bution (Kochert and Steenhof 2002, Watson 2010). Golden 
eagles exhibit delayed reproductive maturity, typically not 
breeding until their fourth or fifth year (Steenhof et al. 1984). 
A clutch of two eggs is common for golden eagles in North 
America (Kochert and Steenhof 2002, Watson 2010), but 
variation in prey availability, habitat conditions for nesting 
and hunting, and weather can limit population-level pro-
ductivity (Steenhof et al. 1997); collectively, these patterns 
potentially limit the ability of populations to respond rap-
idly to population declines (McIntyre and Schmidt 2012). 
Subadult golden eagles (hereafter, subadults) may attempt 
to nest when intraspecific competition is reduced (e.g. prey 
is abundant or adult eagle population is low), but their egg 
production and nest success (< 5%) rates are generally lower 
than adults (Steenhof et al. 1983, McIntyre and Schmidt 
2012).

Maintaining populations of subadults is critical for 
ensuring recruitment into the reproductive (adult) class 
(Katzner et al. 2006, Soutullo et al. 2008, Tack et al. 2017). 
Reduced subadult survival could lead to changes in popula-
tion age structure, decreased nesting and population declines 
(McIntyre and Schmidt 2012). Despite the importance of 
subadults, golden eagle habitat or nest-site selection stud-
ies in North America have focused primarily on breeding 
adults (Marzluff et al. 1997, McIntyre and Schmidt 2012, 
Watson et al. 2014, Braham et al. 2015, Crandall et al. 
2015). During breeding season, nest locations facilitate mon-
itoring of adults (Watson et al. 2014, LeBeau et al. 2015). In 
contrast, subadults may roam extensively, sometimes mov-
ing thousands of kilometers from their natal nest, and their 
movements are not constrained by breeding or territorial 
behaviors (O’Toole et al. 1999, Soutullo et al. 2006, 2013, 
Murphy et al. 2017). Once they reach sexual maturity, they 
generally return to the vicinity of their natal site to breed 
(Steenhof et al. 1984, Millsap et al. 2014). Although the sub-
adult period is critical for honing flight and hunting skills, it 
has been among the least understood aspects of golden eagle 
ecology (Watson 2010). Murphy et al. (2017) investigated 
natal dispersal of golden eagles, revealing that among 16 
telemetered eagles the mean distance between their natal site 
and adult territory was 55.3 km (± 29.7 SD), though they 

did not report movement distances prior to selection of the  
adult territory.

Advancements in satellite tracking have facilitated the 
study of subadults, providing new insights into natal dis-
persal (Soutullo et al. 2006, 2013, Murphy et al. 2017, 
2019), migration (McIntyre et al. 2008) and survival 
(McIntyre et al. 2006). Subadult habitat use has also been 
studied, but these investigations have been restricted spatially 
to within natal territories (Sandgren et al. 2014), limited 
temporally to within an animal’s first year (Soutullo et al. 
2008), or only considered topographical features (i.e. slope, 
aspect, altitude and distance to ridge) as predictors of space 
use (Fielding et al. 2019). Other studies of habitat selec-
tion have included subadults, but only in combination 
with adults (Nielson et al. 2016, Poessel et al. 2016, Miller  
et al. 2017).

In the United States, golden eagle populations are stable 
or in slight decline (Millsap et al. 2013, Nielson et al. 2014, 
U.S. Fish and Wildlife Service 2016). In portions of the 
Great Basin Desert (hereafter, Great Basin), though, occu-
pied territories have decreased by almost half since 2007 
(Slater et al. 2013). Golden eagle declines in this region are 
likely driven primarily by changes in native habitat caused 
by cheatgrass Bromus tectorum invasion (Knapp 1996, 
Kochert and Steenhof 2002, Slater et al. 2013), which limits 
important leporid prey populations (Knick and Dyer 1997, 
Bedrosian et al. 2017). We investigated resource selection of 
subadults prior to recruitment into the breeding population, 
with a focus on informing natural resource management in 
the Great Basin. Our objectives were to use locational data 
(fixes) from tagged, free-ranging subadults within the Great 
Basin to 1) investigate second-order selection of topographic, 
climatic, land cover and anthropogenic variables and 2) com-
pare selection between summer and winter. Golden eagles 
have been associated with steep slopes, cliffs and areas with 
high-class winds, all of which may contribute to generat-
ing orographic uplift (Katzner et al. 2012, 2015). Golden 
eagles may also improve flight efficiency by subsidizing flight 
with thermal uplift (Katzner et al. 2015). Wildfires impact 
land cover and the availability of prey; golden eagles may be 
particularly impacted by fires reducing shrublands, which 
support leporid populations in the Great Basin and have 
long recovery periods (Knick and Dyer 1997, Pellant et al. 
2004, Bedrosian et al. 2017). Wildfires have resulted in 
lower reproductive success and abandonment of territories 
for breeding golden eagles (Kochert et al. 1999, Slater et al. 
2013), and may also influence subadult space use. Golden 
eagles generally avoid areas with human disturbance, but are 
attracted to some infrastructure features that may provide 
perching or scavenging opportunities (Lehman et al. 2007, 
Lonsdorf et al. 2018, Tack et al. 2020). We predicted that 
subadult space use would be positively associated with topo-
graphic relief, shrublands and thermal efficiency (a predictor 
of thermal wind currents; Watson et al. 2014), and negatively 
associated with anthropogenic land-cover types (e.g. urban 
and agricultural lands). We predicted that habitat use would 
vary by season, and that cooler habitats (e.g. higher elevation, 
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Figure 1. Subadult golden eagle Aquila chrysaetos locations (fixes) within the Great Basin Desert during (a) summer and (b) winter; sub-
adults were captured and tagged as nestlings within the Military Operational Area (MOA) around the U.S. Army’s Dugway Proving 
Ground (Dugway).

more woodland habitats) would be selected for more strongly 
in summer (Braham et al. 2015).

Methods

Study area

We conducted our study in the Great Basin of western North 
America (Fig. 1). !is semi-arid ecosystem was characterized 
by cold, wet winters and hot, dry summers with < 305 mm of 
precipitation annually (Pellant et al. 2004). Topography was 
characterized by mountain ranges with elevations < 3000 m 
separated by large, flat valleys. Lower elevations were charac-
terized by sagebrush (Artemisia spp.) steppe and greasewood 
Sarcobatus vermiculatus shrublands, grasslands and salt pla-
yas, whereas open pinyon Pinus edulis and juniper (Juniperus 
spp.) woodlands dominated higher elevations (Pellant et al. 
2004). Invasive grasses (e.g. cheatgrass) have increased the 
extent and frequency of wildfires, reducing native shrubs and 
increasing invasive grasses (Pellant et al. 2004).

Data collection and processing

Telemetered golden eagles in this study fledged from nests 
in the vicinity of the US Army’s Dugway Proving Ground 
(hereafter, Dugway) in western Utah, where golden eagle 
nest monitoring and inventory has been ongoing since 2007 
(Knight 2016). From 2013 to 2018, we entered golden eagle 
nests and hand-captured nestlings that were 7–8 weeks old. 
We sought to maximize the geographic distribution of deploy-
ments around Dugway, but some territories were sampled in 
multiple years due to limited availability of nestlings each 
year. Nestlings were fitted with 45-g solar-powered Argos/
GPS Platform Transmitter Terminals (PTTs, Microwave 
Telemetry, Inc., Columbia, MD; horizontal accuracy  

was ± 18 m) as a backpack using Teflon ribbon. Transmitters 
were programmed to take hourly fixes between 07:00 and 
19:00 h, a midnight roost location, and transmit data to a 
satellite every three days. Nestlings were returned to the nest 
after processing.

We were interested in the independent life stage that 
occurs after parental dependency and before breeding; we 
refer to this period as the subadult stage. Length of depen-
dency on parental care can vary depending on prey availabil-
ity and breeding density (Murphy et al. 2017), but based on 
eagle monitoring in our study region, most hatch-year golden 
eagles were independent by late summer. !us, we excluded 
GPS fixes collected before September of each individual’s 
hatch year. Breeding may begin the fourth year, so we also 
excluded GPS fixes collected after February following each 
individual’s third year. Additionally, to minimize the influ-
ence of antagonistic behavior from territorial adults on sub-
adult habitat selection and to avoid periods of migration, we 
examined selection during two annual periods: summer (8 
July–14 September) and winter (16 November–31 January). 
Although some telemetered individuals ranged outside of the 
Great Basin, we were interested in resource selection within 
the Great Basin and, therefore, we excluded locations col-
lected outside of the Great Basin from subsequent analyses.

We identified five broad categories of predictors (covari-
ates) hypothesized to influence subadult space use includ-
ing topography, climate-related wind patterns, land cover, 
wildfire disturbance and linear anthropogenic features 
(Table 1). We acquired spatial data characterizing covariates 
from publicly available datasets and processed data using 
ArcGIS Desktop 10.6. We derived five topographic covari-
ates expected to influence orographic lift from 30-m-reso-
lution US Geological Survey 3D Elevation Program Digital 
Elevation Models (Table 1, Fig. 2): elevation, slope, topo-
graphic position index (TPI), ridge density and topographic 
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roughness. We calculated both TPI and ridge density using 
the relief analysis toolbox (Weiss 2001, Miller and Schaetzl 
2015). !e TPI compared each location to the mean eleva-
tion of a circular neighborhood within 500 m. Ridge density 
estimated the proportion of area within 500 m characterized 
by TPI as ridge or upper slope (Watson et al. 2014). We esti-
mated the topographic roughness index using digital eleva-
tion model surface tools for ArcGIS 10 (Jenness 2013). We 
characterized wind speed in three ways: wind class, median 
wind class and distance to high-class winds (Table 1). Wind 
class was obtained from National Renewable Energy Lab 
(<https://data.nrel.gov/>; Fig. 2). Wind classes ranged from 
1 to 7 with the maximum mean wind speed (m s−1) at 50 
m above ground for each class being 5.6, 6.4, 7.0, 7.5, 8.0, 
8.8 and 11.9, respectively. We calculated median wind class 
within 500 m. Finally, we measured the distance to the closest 
area with high wind potential by reclassifying the wind classes 
into low (1–2) and high (3–7) classes (sensu Katzner et al. 
2012); high-class winds represented those considered viable 
for wind energy. As acknowledged by Katzner et al. (2012), 
wind speeds were variable (both spatially and temporally) 
and therefore patterns of use associated with measures of 

wind should be interpreted as relative trends. We used the 
spatial analyst area solar radiation tool in ArcGIS 10 to esti-
mate seasonal solar radiation and multiplied solar radiation 
by potential land cover ground warming ratings to estimate 
season-specific potential thermal efficiency (Watson et al. 
2014; Fig. 2).

We used 2011 National Land Cover Database to char-
acterize land cover (Fig. 2). We reclassified land cover into 
eight categories: agriculture, barren, developed, grassland 
and herbaceous (hereafter, grassland), open water, shrubland 
and scrubland (hereafter, shrubland), vegetated wetland 
and woodland (sensu Nielson et al. 2016; Table 1). Land-
cover types vary in prey availability, thermal conditions and 
human disturbance (Marzluff et al. 1997, Whitfield et al. 
2007, Braham et al. 2015), and these factors likely vary sea-
sonally within each land-cover type. In the Great Basin of 
western Utah, shrubland and woodland habitats have been 
associated with higher leporid abundances (Arjo et al. 2007). 
Consequently, we also characterized land cover within 500 m 
as 1) a continuous predictor representing the proportion of 
land cover that was shrubland or woodland (%SW), and 2) as 
a binary predictor indicating if > 50% of the land cover was 

Table 1. Covariates considered for resource selection functions used to assess patterns of use for subadult golden eagles Aquila chrysaetos 
in the Great Basin Desert during summer and winter (2013–2019). Positive (+) and negative (−) predictions indicated these covariates were 
expected to be positively and negatively associated with use, respectively, whereas 0 indicated that we expected these covariates may influ-
ence use but could have positive or negative associations.

Category Covariate Prediction Unit

Topography Elevation1 + 30 m
Slope1 +
Topographic position index (TPI)1 +
Ridge density1 +
Topographic roughness index1 +

Climate Wind speed2

 Distance to high-class winds − m
 Wind class + m s−1

 Median wind class + m s−1

Thermal efficiency1 + 30 m
Land cover Categorical land cover3

 Agriculture − 30 m
 Barren −
 Developed −
 Grassland (including herbaceous) +
 Shrubland (including scrubland) +
 Vegetated wetland −
 Woodland +
Shrubland and woodland cover3

 Proportion of shrubland and woodland cover +
 Majority shrubland and woodland +

Wildfire Fire-return cycles1

 Short (<10 years) − 30 m
 Intermediate (11–20 years) −
 Long (>20 years) +
 Non-burnable −
 Indeterminate NA

Anthropogenic features Distance to primary or secondary road4 0 m
Distance to electrical transmission line5 0 m

1LANDFIRE 2010 (<http://landfire.cr.usgs.gov/>), 2National Renewable Energy Lab (<https://data.nrel.gov/>), 32011 National Land Cover 
Database (<www.mrlc.gov/>), 4US Census Bureau (<www.census.gov/programs-surveys/geography.html>), 5Homeland Infrastructure Foun-
dation-level Data (<https://hifld-geoplatform.opendata.arcgis.com/>).
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either shrubland or woodland (majority SW). We obtained 
data from LANDFIRE 2010 that represented the mean 
period between fires. We classified fire-return intervals into 
short (< 10 years), intermediate (11–20 years) and long (> 20 
years) periods. Two additional classes defined locations that 
were non-burnable or had insufficient data to classify (inde-
terminate). We obtained data from US Census Topologically 
Integrated Geographic Encoding and Referencing Product 
(<www.census.gov/programs-surveys/geography.html>) 
to determine distance to the nearest primary or secondary 
road. We used the US Department of Homeland Security’s 
Homeland Infrastructure Foundation-level Data (<https://
hifld-geoplatform.opendata.arcgis.com>) to estimate the 
distance to the nearest electrical transmission line.

Resource selection analyses

We standardized continuous covariates by subtracting the 
mean and dividing by the standard deviation. We randomly 
split fixes using 75% for model training and 25% for model 
validation. For each season, we generated random available 
points within our spatial extent equivalent to the number 

of training fixes. Open water is not considered habitat for 
golden eagles, but GPS fixes may be acquired over open water 
due to eagles crossing water bodies or precision of GPS fixes. 
Consequently, we excluded fixes over open water from used 
and available data points.

For each season, we used the training dataset and resource 
selection functions (RSFs) to relate probability of use by sub-
adults to candidate models (Manly et al. 2002, Gillies et al. 
2006, Long et al. 2009). We included a random effect for 
individual golden eagles to account for unbalanced samples 
sizes and pseudoreplication from multiple fixes per individual 
(Gillies et al. 2006). We fit mixed-effects logistic regression 
models and estimated coefficients for RSFs using lme4 in R 
(Bates et al. 2015, <www.r-project.org>). We evaluated rela-
tive model fit based on Akaike’s information criterion (AIC; 
Burnham and Anderson 2002).

To refine our covariate set and develop a candidate model 
set, we employed a modified stepwise approach. We tested for 
correlations among continuous covariates using Pearson’s cor-
relation coefficients (r) with corrplot in R (<www.r-project.
org>). For covariates having |r| ≥ 0.6 (Crandall et al. 2015), 
we fit single-predictor models for each season and retained 

Figure 2. Distribution of select covariates in the most-supported models of seasonal resource selection by subadult golden eagles Aquila 
chrysaetos in the Great Basin Desert during summer and winter seasons (2013–2019).
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only the most-supported covariate for subsequent season-
specific analyses. For covariates that were characterized in 
multiple ways (i.e. wind speed and shrubland and woodland 
cover), we fit single-predictor models for each season and 
retained only the most-supported characterization for sub-
sequent season-specific analyses. Nielson et al. (2016) found 
a quadratic effect for elevation to be an important predic-
tor of eagle space use, so we also compared elevation with 
a quadratic effect for elevation (i.e. elevation + elevation2) in 
each season and retained the most-supported season-specific 
characterizations.

We expected that categorical land-cover and fire-return 
cycle predictors were not independent of elevation (and poten-
tially slope). Including covariates that are not independent in 
the same model may result in inflated p-values and inconsis-
tent coefficients (i.e. coefficient estimates can vary substan-
tially, including an artificial change in sign; Lonsinger et al. 
2019). !us, for each season we first compared the single-
predictor model of land cover to additive models with land 
cover and either slope, elevation (in a quadratic form) or 
both. We repeated this process for fire-return cycle. In both 
seasons, additive models containing the categorical predic-
tors with elevation, slope or both resulted in inconsistencies 
in the coefficient estimates, including changes in the direc-
tion of effect (i.e. change in sign). For example, when con-
sidering only land cover in summer, the coefficient suggested 
that woodland was positively (and strongly) associated with 
subadult space use (this was supported by resource selection 
ratios). But when slope, elevation or both were included with 
land cover, the association between subadult space use and 
woodlands was reportedly negative. Consequently, for each 
season we compared single-predictor models for land cover 
and fire-return cycle to models with the additive combination 
of slope and elevation (in a quadratic form); these compari-
sons led to the exclusion of land cover and fire-return cycle as 
categorical predictors in the mixed-effects logistic regression 
models).

After refining the covariate set to uncorrelated predictors 
potentially influencing subadult space use, any combina-
tion of covariates could represent an appropriate model of 
resource selection. When a priori combinations of predic-
tors cannot be identified to reduce a model set, evaluating 
all possible combinations of predictors has been suggested 
(Doherty et al. 2012, Morin et al. 2020), as stepwise selec-
tion procedures may result in spurious model selection results 
(Burnham and Anderson 2002, Calcagno and de Mazancourt 
2010). Consequently, our candidate model set for each sea-
son included all possible additive combinations of our refined 
covariate set and the null model. We excluded models that 
failed to converge from subsequent comparisons. After iden-
tifying the most-supported model in each season, we tested 
if previously excluded characterizations of predictors in the 
model were more supported than the retained characteriza-
tions when considered in concert with the other predictors 
found in the most-supported season-specific models.

Although the categorical land-cover and fire-return 
cycle predictors were excluded from the mixed-effects 

logistic regression models, these were important to managers. 
Consequently, we used a χ2 test to evaluate if the proportion 
of used points within a category (e.g. a land-cover type) was 
different from the proportion of random available points, and 
calculated odds ratios with 95% confidence intervals. Odds 
ratios > 1 suggested selection for a particular feature, whereas 
ratios < 1 suggested avoidance.

Model validation

We used the most-supported season-specific models to pre-
dict patterns of subadult space use based on:
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where β represented the RSF coefficient, x represented the 
value of the associated covariate at a given point, and p was 
the total number of covariates in the model. Within our area 
of management interest (i.e. the Military Operational Area 
around Dugway; Fig. 1), each 30-m cell was assigned a pre-
dicted use value. We scaled these values to a range of 0–1 by 
dividing each predicted use value by the maximum predicted 
use value and classified predicted use into 10 bins (with 10 
being the highest) using equal-area rank bins (Nielson et al. 
2016). In each season, we summed the number of valida-
tion points within each bin, expected higher ranked areas to 
be used disproportionately more, and used Spearman’s rank 
coefficients to evaluate these relationships and assess model 
performance.

Results

Capture, tracking and covariate refinement

We outfitted 76 eagle nestlings from 72 nests with GPS trans-
mitters; 46 transmitted data from within our study extent 
from September of their hatch year through January 2019 
and were included in the analysis (Table 2). Fifteen individu-
als survived long enough to age out of the subadult class, 
whereas eight individuals were still subadults at the end of 
the study (Table 2). Telemetered subadults produced a total 
of 453 711 fixes from 2013 to 2019, including 99 037 fixes 
(excluding open water fixes) distributed between summer (47 
773) and winter (51 264) within the Great Basin (Table 3). 
Although more individual subadults contributed data dur-
ing summer than winter, individuals in winter contributed 
more fixes within the Great Basin Desert than those in sum-
mer (Table 3). !e variation in predictors within the random 
available points was comparable to the variation in predictors 
across the Great Basin Desert (Supporting information).

Among spatial covariates, only slope and topographic 
roughness were correlated (r = 0.86) and in both seasons slope 
(AIC: summer = 95 072; winter = 102 033) received greater 
support than topographic roughness (AIC: summer = 95 
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878; winter = 103 515). In both seasons, the quadratic effect 
for elevation (AIC: summer = 94 436; winter = 99 636) was 
more supported than elevation (AIC: summer = 95 441; win-
ter = 102 676). In summer, wind class (AIC = 98 892) was 
more supported than median wind class (AIC = 99 090) or 
distance to high-class winds (AIC = 99 135). In contrast, 
median wind class (AIC = 105 931) was more supported in 
winter than wind class (AIC = 106 288) or distance to high-
class winds (AIC = 106 593). In both seasons, majority SW 
(AIC: summer = 98 551; winter = 105 079) was more sup-
ported than %SW (AIC: summer = 99 042; winter = 105 
179). As expected, models of subadult use containing land 
cover with slope, elevation or both resulted in inconsistent 
patterns in the direction of effect for beta coefficients of land-
cover categories. Similarly, models containing fire-return 
cycle with slope, elevation or both produced inconsisten-
cies for beta coefficients associated with fire-return cycle 
categories. !ese inconsistencies (and change in direction 
of effect) suggested underlying multicollinearities between 
each categorical predictors and slope and elevation. In both 
seasons, the additive model of slope and elevation in a qua-
dratic form (AIC: summer = 92 590; winter = 97 477) was 
more supported than land cover (AIC: summer = 98 759; 
winter = 104 034) or fire-return cycle (AIC: summer = 98 
312; winter = 105 129). Following comparisons of covariates, 
we retained nine predictors for each season including slope, 
quadratic form of elevation, TPI, ridge density, distance to 
primary or secondary roads, distance to transmission lines, 
majority SW, season-specific thermal efficiency and either 
wind class (summer) or median wind class (winter).

Resource selection analyses

Within each season, there were 512 possible models repre-
senting additive combinations of covariates or the null model. 
In both seasons, 2.1% of models failed to converge and were 
excluded from model selection. In summer, the most-sup-
ported model of resource selection by subadults included 
elevation (quadratic form), slope, distance to roads, majority 
SW, TPI, thermal efficiency and ridge density (Table 4, 5). 
!ree additional models were competitive (within 4 ∆AIC), 
and each contained the same structure as the most-sup-
ported model but with the addition of wind class, distance 
to transmission lines or both (Table 4). Closer inspection 
of these models revealed that the additional parameters did 
not improve model fit relative to the most-supported model 
(Table 4) and 95% confidence intervals for their beta coeffi-
cients overlapped 0, indicating these covariates were uninfor-
mative (Arnold 2010, Leroux 2019). !e cumulative Akaike 
weight of the top four models was 96% (Table 4). Subadult 
use in summer was positively associated with steeper slopes, 
thermal efficiency, distance from roads and land cover domi-
nated by shrubland and woodland (Table 5, Fig. 3). Use was 
also associated with higher TPI (i.e. ridges), but negatively 
associated with ridge density (Table 5, Fig. 3). Subadult use 
was highest at intermediate elevations (Table 5, Fig. 3). For 
winter, the most-supported model of resource selection by 
subadults received 100% of the Akaike weight and included 
elevation (quadratic form), slope, distance to roads, major-
ity SW, TPI, ridge density, distance to transmission lines and 
median wind class (Table 4, 5). !e next closest model was 

Table 2. Temporal distribution of 76 nestling golden eagles Aquila chrysaetos GPS-tagged in the Great Basin Desert from 2013 to 2018 and 
the number of individuals surviving to the subadult stage and transmitting data from each annual cohort during each of six subsequent sum-
mer (8 July–14 September) and winter (16 November–31 January) seasons.

Life stage Season1 2013 2014 2015 2016 2017 2018

Nestlings 19 24 8 8 9 8
Subadults Summer 2013 11 – – – – –

Winter 2013 7 – – – – –
Summer 2014 6 18 – – – –
Winter 2014 6 14 – – – –
Summer 2015 6 12 3 – – –
Winter 2015 5 9 2 – – –
Summer 2016 – 9 2 6 – –
Winter 2016 – 9 1 6 – –
Summer 2017 – – 1 6 4 –
Winter 2017 – – 1 6 3 –
Summer 2018 – – – 5 3 3
Winter 2018 – – – 3 2 3

1Year for each season indicates the season start date.

Table 3. Number of GPS-tagged subadult golden eagles Aquila chrysaetos, mean (± SD) number of GPS locations (fixes) per subadult, and 
total number of subadult locations used for model training and validation during summer (8 July–14 September) and winter (16 November–31 
January) in the Great Basin Desert.

Season Subadults
Training fixes Validation fixes

Mean/subadult Total Mean/subadult Total

Summer 46 779 (± 582) 35 829 260 (± 195) 11 944
Winter 36 1068 (± 677) 38 448 356 (± 226) 12 816
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> 105 ∆AIC from the most-supported model. Subadult use 
in winter was positively associated with steeper slopes, TPI, 
ridge density and land cover dominated by shrubland and 
woodland cover (Table 5, Fig. 3). Use was negatively associ-
ated with median wind class, as well as distance from roads 
and transmission lines (Table 5, Fig. 3). Winter subadult use 
was highest at intermediate elevations (Table 5, Fig. 3). In 
both seasons, replacing predictors in the top model that were 
characterized in multiple ways with previously excluded alter-
native characterizations did not improve model fit.

Excluding grasslands in summer (p = 0.1), the propor-
tion of used points within each land-cover class was signifi-
cantly different from available points (all p < 0.001) in both 
seasons. Odds ratios suggested selection for woodlands in 
both seasons, contrasting patterns for shrublands (selection 
in summer; avoidance in winter) and grasslands (no selec-
tion in summer; avoidance in winter), and avoidance of all 
other land-cover classes (Fig. 4). For fire frequency, the pro-
portion of used points within each class was significantly 
different from available points (all p < 0.001) in both sea-
sons. Odds ratios suggested subadults selected for areas with 

long fire-return cycles (> 20 years) and avoided areas that 
were non-burnable or had intermediate fire-return cycles 
(11–20 years; Fig. 4). Odds ratios suggested areas with short 
fire-return cycles (< 10 years) were avoided in summer, but 
selected for in winter (Fig. 4).

Model validation

Restricting the model validation procedures to the 
Military Operational Area around Dugway resulted in 
92% of validation points being considered for model vali-
dation. Validation points were disproportionately located 
in bins with higher predicted use relative to their avail-
ability. In summer, 73.5% and 21.2% of validation points 
were in the highest and second highest predicted use bins, 
respectively. In winter, 25.0% and 17% of validation 
points were in the highest and second highest predicted 
use bins, respectively. In both seasons, the proportion of 
validation points decreased with decreases in predicted use 
bins; no validation points were in the lowest predicted use 
bins in summer. Based on Spearman’s rank correlations, 

Table 4. Most-supported mixed-effects logistic regression model(s) of subadult golden eagle Aquila chrysaetos resource selection in the 
Great Basin Desert during summer and winter (2013–2019). Explanatory variables include elevation (Elev), slope, distance to road (DistR), 
distance to transmission lines (DistT), ridge density (Ridge), majority shrubland and woodland (SW), topographic position index (TPI), sum-
mer thermal efficiency (TE), wind class (Wind) and median wind class (MedWind). Each model is ranked based on ∆AIC, where K = number 
of model parameters, wi = Akaike weight, Σwi = cumulative Akaike model weights and LL = log-likelihood. For each season, only the model(s) 
required to achieve a Σwi > 0.98 are presented.

Model K AIC ∆AIC wi Σwi LL

Summer 
 Elev + Elev2 + Slope + DistR + SW + TPI + TE + Ridge 10 91 316.77 0.00 0.50 0.50 −45 647.9
 Elev + Elev2 + Slope + DistR + SW + TPI + TE + Ridge + DistT 11 91 317.59 1.82 0.20 0.70 −45 647.8
 Elev + Elev2 + Slope + DistR + SW + TPI + TE + Ridge + Wind 11 91 317.72 1.95 0.19 0.88 −45 647.9
 Elev + Elev2 + Slope + DistR + SW + TPI + TE + Ridge + DistT + Wind 12 91 319.55 3.78 0.07 0.96 −45 647.8
 Elev + Elev2 + Slope + DistR + SW + TPI + TE 9 91 322.00 6.23 0.02 0.98 −45 652.0
Winter
 Elev + Elev2 + Slope + DistR + SW + TPI + Ridge + DistT + MedWind 11 93 234.67 0.00 1.00 1.00 −46 606.3

Table 5. Estimated beta coefficients (β), standard errors (SE) and p-values of the most-supported model structure of subadult golden eagle 
Aquila chrysaetos resource selection in the Great Basin Desert during summer and winter (2013–2019). A dash indicates that the covariate 
was not included in the most-supported model structure for that season.

Summer Winter
β SE p-value β SE p-value

Intercept −0.1247 0.036 < 0.001 −0.1554 0.054 0.004
Topography
 Slope 0.3832 0.011 < 0.001 0.3565 0.010 < 0.001
 Elevation 1.8376 0.049 < 0.001 3.0636 0.061 < 0.001
 Elevation2 −1.5010 0.046 < 0.001 −2.8449 0.060 < 0.001
 Topographic position index 0.2616 0.008 < 0.001 0.2933 0.009 < 0.001
 Ridge density −0.1102 0.038 0.004 0.3982 0.039 < 0.001
Climate
 Median wind class – – – −0.2859 0.011 < 0.001
 Summer thermal efficiency 0.1138 0.010 < 0.001 – – –
Land cover
 Majority shrubland and woodland 0.1535 0.029 < 0.001 0.3664 0.028 < 0.001
Anthropogenic features
 Distance to primary and secondary road 0.0601 0.008 < 0.001 −0.1814 0.010 < 0.001
 Distance to electrical transmission line – – – −0.3048 0.010 < 0.001
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both summer (rs = 0.969, p-value < 0.001) and winter 
(rs = 0.867, p-value = 0.002) models performed well.

Discussion

!ere is a paucity of information on patterns of resource 
selection by subadult golden eagles, in part, because they are 
nomadic and do not maintain stable home ranges or territories, 
making them difficult to study (Watson 2010). In contrast, 

adult golden eagles often demonstrated space use patterns 
restricted to home ranges containing nest sites and foraging 
habitats (Marzluff et al. 1997, Watson 2010, McIntyre and 
Schmidt 2012). Previous resource selection studies for golden 
eagles have focused on adults and within home range selec-
tion (Watson et al. 2014, Braham et al. 2015, Crandall et al. 
2015). Resource use by adults has been described as ‘stable’ 
over time (Marzluff et al. 1997, Watson et al. 2014), with use 
anchored by nests (Kochert and Steenhof 2012, Watson et al. 
2014). Still, adults have demonstrated seasonally dynamic 

Figure 3. Intensity of use by subadult golden eagle Aquila chrysaetos as a function of select predictors in the most-supported model structures 
for resource selection in the Great Basin Desert during summer and winter (2013–2019). Use was scaled to a maximum value of 1 and 
plotted based on mean elevation (excluding the plot for elevation), median values for other numeric covariates, and for sites characterized 
as majority (> 50%) shrubland or woodland.
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core use areas due to shifting resource availability and cli-
matic conditions (Watson et al. 2014, Braham et al. 2015). 
While seasonal patterns in resource availability and condi-
tions may be expected to influence subadult space use, they 
are not tethered to nests or territories and therefore may 
select resources differently than adults. Our results supported 
dynamic patterns of space use for subadults, with patterns 
of selection varying between summer and winter. We were 
interested in patterns of space use during the subadult stage 
and, therefore, assumed behavior related to space use patterns 
was more similar among subadults (regardless of their age) 
than between subadults and adults. Our sampling design of 
tagging nestlings resulted in more first-year subadults in our 
sample than second-year subadults, and more second-year 
than third-year subadults. !us, if subadults change their 
behavior from their first to third year, our results likely reflect 
the patterns of younger subadults to a greater degree than 
older subadults.

Landscape characteristics have consistently been associated 
with golden eagle resource selection. Broad-scale modeling of 
adults in the western United States during summer found 
that space use increased with elevation up to a threshold of 
3012 m (Nielson et al. 2016). Our results also suggested sea-
sonal thresholds, with use increasing up to ~2330 m in sum-
mer and ~2050 m in winter. Adults in the Mojave Desert 

disproportinatly used higher elevations more during warmer 
months and made long-distance movements to cooler, higher 
elevation sites (Braham et al. 2015). !e shift by subadults 
that we observed to higher elevations in summer, and lower 
elevations in winter, was likely related to behavioral thermo-
regulation, foraging opportunities or both. Subadult use of 
the highest elevations (those over the threshold elevation) 
was substantially higher in summer than winter; for example, 
intensity of use at 3200 m by subadults was > 4× higher in 
summer than winter, presumably due to avoidance of snow 
covered ridges and reduced prey availability during winter.

Golden eagles exploit orographic lift and rising convec-
tional currents (i.e. thermals) to subsidize flight (Katzner et al. 
2015). While subsidizing sustained flight is adventageous, 
subadults are less efficient than older eagles (Pirotta et al. 
2018). Eagles may select for landscape features and condi-
tions conducive to generating orographic lift or thermals 
(Watson et al. 2014, Nielson et al. 2016). Adults in the 
Rocky Mountains and Columbia Plateau tended to select 
rugged terrain and ridges with sufficient slope to produce 
orographic lift (Watson et al. 2014, Domenech et al. 2015). 
Subadults in the Great Basin demonstrated similar patterns, 
selecting greater slopes and ridges that likely generated lift 
and subsidized lower-altitude soaring (Katzner et al. 2012, 
2015). Subadults used areas with greater ridge densities more 

Figure 4. Odds ratios and 95% confidence intervals for subadult golden eagle Aquila chrysaetos resource selection of land-cover types and 
fire-return cycles in the Great Basin Desert during summer and winter (2013–2019). Fire-return cycles included short (< 10 years), inter-
mediate (11–20 years), long (> 20 years) and non-burnable. Values > 1 indicated selection for a class, whereas values < 1 indicated avoid-
ance. !e vertical line separates land-cover types from fire-return cycles.
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in winter and lower ridge densities more in summer. !ese 
patterns likely reflected, at least in part, seasonal availability 
of thermals. In winter, shorter day length and lower angle 
of the sun limit the generation of thermals (Maransky et al. 
1997). Consequently, subsidizing flight through orographic 
lift may have been more important in winter, whereas ther-
mals may be important in summer to subsidize energetic 
demands of hunting over longer diurnal periods. Measures 
associated with thermals have been related to golden eagle 
space use in some studies (Nielson et al. 2016) but not oth-
ers (Watson et al. 2014). Nielson et al. (2016) found that 
late-summer eagle use was influenced by solar radiation. We 
found evidence that thermals influenced subadult space use 
in summer as well, and thermals may facilitate use of lower 
ridge density areas. Golden eagles reportedly select for areas 
with higher wind speeds during spring and fall migration 
(Katzner et al. 2012) and late summer (Nielson et al. 2016). 
In contrast, we did not find an influence of wind speed on 
summer space use, and our results suggested that winter use 
was highest at low wind speeds. !ese conflicting results may 
be due to the scale of inquiry, high variability in wind speeds, 
quality of wind speed data or a combination of these factors. 
Notably, there was proportionally less high-class winds in our 
Great Basin spatial extent than in the broader western United 
States (Nielson et al. 2016). Temporal variation in wind 
speed may also influence differences in seasonal patterns of 
use by subadults; as one reviewer suggested, subadults may 
avoid areas where wind speeds are more variable. !e wind 
speed data we used represented the annual average wind-
power class, and we did not have season-specific estimates of 
wind speed or measures of wind speed variability at a scale 
and resolution necessary to address the influence of variation 
in wind speed.

During breeding and non-breeding seasons, adults in the 
Great Basin selected for core areas with shrublands (e.g. sage-
brush, rabbitbrush (Chysothamnus spp.) and salt-desert scrub) 
and avoided grasslands (Marzluff et al. 1997). Similarly, the 
majority of adult locations in the Columbia Plateau region 
were in shrublands (60.7%), with fewer locations in forests 
(19.2%) or grasslands (17.3%; Watson et al. 2014). In the 
western United States, Nielson et al. (2016) reported a nega-
tive relationship between golden eagle space use and forests 
(or woodlands), but did not find a relationship between use 
and shrublands or grasslands; they suggested that these pat-
terns implied selection for open landscapes. Marzluff et al. 
(1997) suggested that selection for shrublands was related 
to the availability of important prey (black-tailed jackrab-
bits Lepus californicus). Jackrabbit relative abundance has 
been positively associated with shrublands in other portions 
of the Great Basin, including in western Utah (Arjo et al. 
2007). In contrast, subadults selected most strongly for 
woodlands in both seasons, selected for shrublands in sum-
mer, and avoided shrublands in winter. Eagles are less effi-
cient at hunting in dense forests (Whitfield et al. 2007), 
but woodlands of the Great Basin are predominantly open 
pinyon–juniper so these differences may have reflected spa-
tial partitioning by subadults to lower-quality (e.g. reduced 

prey, more difficult hunting) habitats to minimize compe-
tition with adults. Avoidance of shrublands during winter 
suggested spatial partitioning was stronger when energetic 
demands were higher and prey resources more limited 
(Halley and Gjershaug 1998). During summer, proportional 
use of grasslands by subadults may be facilitated by lower 
energetic requirements and seasonally higher prey avail-
ability. Subadults avoided agriculture, barren, wetland and 
developed cover types in both seasons. Avoidance of agri-
culture and developed lands has been documented among 
adults in the Rocky Mountains, Columbia Plateau, Mojave 
Desert and northern Great Basin (Marzluff et al. 1997, 
Watson et al. 2014, Braham et al. 2015, Domenech et al. 
2015).

Inferred patterns of land-cover selection by subadults 
assume that land-cover data from 2011 adequately repre-
sented land cover during sampling. Fire is the primary driver 
of land-cover change in the Great Basin, and the distribution 
and frequency of fires is greatest in lower-elevation areas that 
are predominantly grasslands, where cheatgrass is more prev-
alent and land-cover is reestablished as grasslands (Kitchen 
2012, Williamson et al. 2020). !e Great Basin was charac-
terized primarily (> 88%) by long fire-return cycles (> 20 
years), with < 1% of the area having short fire-return cycles 
(< 10 years; Supporting information). Consequently, we 
expect only negligible change in land-cover types across the 
study area between the time the land-cover data was collected 
and the start of the study (2013). Still, severe fire disturbance 
in shrublands and woodlands was possible and would have 
been expected to produce directional land-cover change (i.e. 
land cover would transition to earlier successional grass-
lands). Over a 10-year period, Byerly et al. (2018) reported 
a mean decrease of only 2% for Great Basin land-cover types 
that were included in our shrubland and woodland catego-
ries. Considering the directional pattern of fire disturbance, 
if shrubland or woodlands did decrease substantially in the 
study area during our study, using land-cover data collected 
prior to our study period (relative to land-cover data from 
the middle or end of our study period) would have produced 
conservative estimates (i.e. odds ratios) of the strength of 
selection for shrublands and woodlands, and avoidance of 
grasslands.

Fires alter land cover and can influence prey availability. 
In the Great Basin, increased fire frequency has resulted in 
the loss of shrublands and increase in invasive grasslands 
(Pellant et al. 2004). Subadult selection for areas with long 
fire-return cycles aligns with selection for prey-rich shrubland 
and woodland habitats. We hypothesize that subadult selec-
tion for areas with short fire-return cycles in winter (which 
was avoided in summer) could be related to selection for areas 
near roads and transmission lines during winter. Areas within 
a 15-km radius of a road or transmission line were 4.6× more 
likely to have a short fire-return interval than areas that were 
further away, a pattern which may be related to the distri-
bution of roads and transmission lines relative to fire-prone 
cheatgrass grasslands, increased human activity and human-
caused fires in areas closer to roads, or both.
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Securing food is a substantial challenge for golden eagles, 
especially hatch-year birds that lack hunting experience and 
may die of starvation (U.S. Fish and Wildlife Service 2016). 
In Scotland, winter diet of golden eagles was dominated by 
carrion, resulting from winter-killed ungulates (Watson et al. 
1992). Carrion is an important source of food during winter 
when live prey is scarce (Marr and Knight 1983, Halley and 
Gjershaug 1998, Bedrosian et al. 2017) and subadults will 
visit carrion sites more frequently than adults (Halley and 
Gjershaug 1998, Watson 2010). Anecdotal observations sug-
gested that golden eagles in the Great Basin may also rely 
heavily on carrion from road- and winter-killed ungulates. 
In the Great Basin, many roads traverse remote areas and 
have high speed limits, conditions that may increase the fre-
quency of road-killed ungulates (Gunther et al. 1998). Our 
results suggested that in winter, subadults used areas closer 
to roads more frequently, and these patterns may be related 
to selection for areas that provided scavenging opportunities. 
In contrast, subadults selected for areas further from roads in 
summer, but this relationship was not as strong. Halley and 
Gjershaug (1998) found that golden eagles did not scavenge 
carcasses in summer, perhaps due to increased bacterial con-
tamination and lower nutritional quality of carcasses, higher 
prey availability, lower energetic demands or a combination 
of factors.

Golden eagles used transmission lines more during win-
ter than other seasons (Craig and Craig 1984, Slater and 
Smith 2010). Slater and Smith (2010) documented a surge 
in golden eagle activity along transmission lines in winter. 
Similarly, our results suggested that in winter, subadults 
selected for areas closer to transmission lines, which may have 
been related to winter communal roosting opportunities with 
thermoregulatory benefits (Craig and Craig 1984) or animals 
cueing off one another to locate carrion when resources were 
scarce.

Our goal was to test hypotheses related to seasonal varia-
tion in selection by subadults, not to develop a predictive 
model. Logistic regression-based models of space use can be 
useful for testing hypotheses about a priori predictors and 
interpreting individual regression coefficients, and still have 
poor predictive capabilities. Although the validation proce-
dures suggested the summer and winter models performed 
well, we caution against using these models for predictive 
purposes. Model validation using a subset of data withheld 
from the sampled data (as we have done, and as is common in 
resource selection studies when independent data is not avail-
able) is fraught with issues and often appear to predict well, 
even when they have little (or no) predictive power (Copas 
1983, Beutal et al. 1999). We restricted our validation to the 
Military Operational Area around Dugway due to computa-
tional limitations, and because managers in this region were 
interested in visualizing the spatial (predicted) distribution 
subadults in this area during the period of study.

Patterns of selection suggest that continued loss of shrub-
lands due to increased spread of invasive grasslands and fire 
frequency (Pellant et al. 2004) may negatively influence sub-
adults. Similarly, winter space use by subadults, when their 

spatial patterns are more aggregated, emphasize the impor-
tance of maintaining open woodland habitats. Our results 
provide complementary data to previous studies, identifying 
patterns of selection for subadults that are comparable, but 
not identical to patterns of selection by adults.
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