LEAD POISONING OF NORTH AMERICAN WILDLIFE FROM LEAD SHOT AND LEAD FISHING TACKLE

DRAFT

Wendy Sanborn, Ph.D. HawkWatch International 1800 South West Temple, Suite 226 Salt Lake City, UT 84115 (801) 484-6808 wsanborn@hawkwatch.org

Abstract

Thousands of tons of lead are deposited in the environment annually through hunting, fishing, and shooting, thus exposing dozens of species birds to this toxic substance. Because lead pellets and sinkers resemble grain and grit, water birds, upland game birds, and songbirds may eat them. Raptors ingest lead when scavenging hunter-killed carcasses or preying on apparently healthy prey animals carrying shot in their tissues. While lead may pass through the digestive tract, it may be digested and absorbed into the blood stream causing behavioral and neurological dysfunction, compromising the immune system, and (sometimes) resulting in death. Indeed absorption of a single lead pellet can be lethal. Lead poisoning of waterfowl and a key predator, the Bald Eagle, resulted in a 1991 federal ban on the use of lead shot in waterfowl hunting. While the ban has mitigated lead poisoning of waterfowl, Bald Eagles, Golden Eagles, California Condors, Common Loons, and swans continue to succumb to lead poisoning at significant rates. Thus additional restrictions are being placed on lead in some National Parks, National Wildlife Refuges, state lands, and statewide in a few states. At the same time, nontoxic alternatives are becoming increasingly available. Adoption of nontoxic options has been slow however, probably because early nontoxics performed poorly in comparison with lead. But steel technology has improved substantially and the price has dropped, currently approaching that of lead. A variety of new ammunition and tackle types are being developed incorporating substances such as bismuth and tungsten which perform as well as or better than lead. While they are more expensive, this cost differential only represents a small part of sports enthusiasts' annual expenditures. Through a multi-media outreach program, HawkWatch International will seek to inform sports enthusiasts of the risks of using lead tackle and ammunition and the benefits of using nontoxic alternatives. As more hunters and anglers learn about the impact of lead on nontarget animals and the benefits of using nontoxics, they are likely to adopt those alternatives even if they are more expensive.

Table of Contents

ii
v
1
1
2
4
5
6
6
7
7
8
9
0
1

List of Tables

Table 1:	Estimates of pellet deposition in hunting and shooting areas	19
Table 2:	Examples of lead exposure and lead poisoning in waterfowl due to hunting	20
Table 3:	Examples of lead exposure and primary lead poisoning in game birds due to hunting and fishing	21
Table 4:	Tests for lead exposure in wildlife	22
Table 5:	Examples of lead exposure and lead poisoning in raptors due to hunting and fishing	24
Table 6:	Avian species poisoned by lead fishing tackle	26
Table 7:	Examples of wildlife lead exposure at trap, skeet, and shooting ranges	26
Table 8:	Current regulations relevant to lead and nontoxics for hunting, shooting, and fishing	27
Table 9	Comparisons of shot ingestion rates in waterfowl since 1991 ban on lead shot in waterfowl hunting	29
Table 10:	Available Nontoxic Ammunition	30
Table 11:	: Price comparison on a sample of pheasant loads (≅1 ¼ oz. 2 ¾" Size 4 shells)*	31
Table 12:	Price comparison on a sample of sinkers and weights*	31

Introduction

Despite a 1991 federal ban on lead shot for waterfowl hunting, lead poisoning continues to be a problem for wildlife because thousands of tons of lead are deposited through upland game hunting, fishing, and shooting sports annually. Water birds, upland game birds, and songbirds may eat lead shotgun pellets and split shot sinkers mistaking them for food or grit. Additionally, raptors may ingest lead shot embedded in apparently healthy prey animals or carcasses. Once digested and absorbed into the blood, even a single shotgun pellet or lead split shot sinker can be lethal. Sublethal levels can compromise health and cause behavioral and neurological dysfunction. Research suggests that lead poisoning is the leading cause of death in adult loons in the Northeast and a significant mortality factor in Bald Eagles, Golden Eagles, and California Condors. Because of the continued incidence of lead poisoning after the ban on lead in waterfowl hunting, lead ammunition and tackle are being further restricted on some National Parks, National Wildlife Refuges, state lands, and even statewide in some states. At the same time, a variety of nontoxic alternatives are becoming increasingly available.

To further minimize environmental lead deposition, HawkWatch International has launched its Wildlife Lead Poisoning Reduction Program (WLPRP), an outreach effort designed to inform outdoor enthusiasts of the unintended impacts of lead use on wildlife, and to encourage the use of nontoxic ammunition and tackle. This report, a review of the lead poisoning problem, is the foundation of that effort. Next, HawkWatch will work with hunters and anglers to better understand their knowledge about and attitudes toward lead and lead-free alternatives. HawkWatch will develop a multimedia approach to sensitize hunters and anglers to the unintended negative spinoffs of lead ammunition and tackle and introduce (or re-introduce) them to nontoxic alternatives. HawkWatch believes that exposure to the problem and the solutions that can be implemented relatively easily by individual hunters and anglers will appeal to the many sports enthusiasts who deeply value, and wish to help conserve, wildlife and the environment.

Lead Poisoning of Waterfowl

In the late 1800s, die-offs of waterfowl and geese were documented throughout the United States (Grinnell 1894, Hough 1894). Necropsies revealed that many of the birds had ingested lead shotgun pellets and presumably died from lead poisoning. Additional incidents of lead poisoning were described during the first half of the twentieth century involving Mallards (*Anas platyrhynchos*) (Bowles 1908), Canvasbacks (*Aythya valisineria*) (McAtee 1908), Greater Scaups (*Aythya marila*) (Van Tyne 1929), Trumpeter Swans (*Cygnus buccinator*) (Munro 1925), and various other ducks (Schillinger and Cottam 1937).

Thousands of ducks and geese in the Mississippi Flyway succumbed to lead poisoning in several die-offs during the late 1930s and 1940s. Shortly thereafter, Bellrose (1959) conducted an ambitious, and now classic, research project to gain an understanding of the extent of the lead poisoning problem. His survey of wildlife professionals from around the country revealed that die-offs had been documented in all major flyways, that Mallards, Northern Pintails (*Anas acuta*), and Canada Geese (*Branta canadensis*) appeared to be especially susceptible to lead poisoning, and that most die-offs occurred after the hunting season in late fall and early winter. Bellrose speculated that lead shot was most readily

1

available at the end of the hunting season in areas that were heavily shot over by waterfowl hunters and estimated that over 100,000 lead pellets per acre could accumulate by the end of the hunting season. Foraging waterfowl were exposed to lead when they ate these pellets, presumably mistaking them for food or grit.

In wetlands, lead availability is determined by pellet density, soil type, water depth, and pellet size. Clearly, the most popular hunting areas accumulate the highest pellet densities (see Table 1). Conditions in wetland habitats strongly influence shot availability. Pellets that sink into soft, silty bottoms are out of reach of some waterfowl but pellets do not penetrate hard substrates (e.g. clay) and thus remain available to waterfowl. Shallow water allows waterfowl to reach the bottom and access pellets whereas deep water restricts such access. Finally, some sizes of pellets are more attractive to wildlife than others, apparently due to their resemblance to grain or gravel.

Upon examining the gizzards of 40,000 harvested waterfowl and fluoroscoping more than 5,000 live Mallards, Bellrose found that up to 6% of the waterfowl population had lead pellets in their gizzards at any one time. Because experimental data indicated that pellets were generally expelled two to three weeks after ingestion and that lead poisoned ducks died within a month, Bellrose predicted that a much higher percentage of waterfowl ingested lead shot throughout the year (~40%) and that most lead poisoning mortalities went unnoticed. Thus, although Bellrose had set out to study waterfowl die-offs, he concluded that day-to-day lead poisoning was widespread with 4% of waterfowl populations dying annually.

Bellrose's research served as the conceptual foundation and impetus for numerous subsequent studies addressing lead poisoning in waterfowl that have largely corroborated his findings (Table 2). This collective data was crucial to passage of the 1991 ban on the use of lead shot in waterfowl hunting. Also, the patterns described in the waterfowl literature are applicable to other high-risk (but less studied) wildlife such as upland game birds and raptors (Kendall et al. 1996, Locke and Thomas 1996, Kramer and Redig 1997, Miller et al. 1998).

Primary Lead Poisoning Associated with Hunting

Although lead shot was banned for waterfowl hunting, much residual lead remains in wetlands. Additionally, upland game hunting continues to add to lead loads where hunters shoot in riparian areas or marshes. A number of water birds, exhibiting different feeding strategies, are exposed to such lead (Bellrose 1959). Dabblers typically skim the bottom digging in the mud for roots, leaves, seeds, or shot resting there. Diving ducks, swans, and geese utilize deeper water but are still exposed to shot when feeding. And, shorebirds ingest lead when probing the soft soils along banks and foraging in sediments in the shallows. Their bills allow them to dig deeply in search of seeds and insects exposing them to shot that is unavailable to other species. In sum, water birds occupying different niches utilize several sediment layers. The result is that newly deposited lead is available to some species and old spent shot that has sunk into sediments is available to others.

Many upland bird species feed on seeds and grains in fields and edges. Lead pellets closely resemble these food items and occur in hunted areas where the birds feed. This is especially prevalent in fields that are planted with grains

attractive to game species and that are hunted each fall after harvest. In such cases, both food and shot are readily available to large numbers of foraging birds, increasing the potential for lead exposure (see Table 3).

Symptoms of lead poisoning do not necessarily occur each time a bird consumes lead shot. Sometimes, the pellets will pass through the digestive tract within 24 hours and the bird may be exposed to lead without exhibiting symptoms of lead toxicity. At other times, the shot lodges in the gizzard where it is pulverized by the gizzard's grinding action and eroded by digestive acids. This process releases lead salts that are absorbed into the blood stream causing lead poisoning.

Birds can experience two types of lead poisoning (Bellrose 1959, Redig 1985, Sanderson and Bellrose 1986, Eisler 1988, Scheuhammer and Norris 1996). A bird with <u>acute lead poisoning</u> appears to be in good health but experiences massive tissue destruction and damage to internal organs, dying within a few days. A single lead pellet is enough to produce acute poisoning (Sanderson and Bellrose 1986). A bird experiencing <u>chronic lead poisoning</u> retains the shot in the digestive tract for several days or even several weeks until the pellets pass or dissolve (Grandy et al. 1968, Kimball and Munir 1971, Finley and Deiter 1978). A variety of symptoms ensue which may or may not be lethal. At low lead levels, the bird may experience appetite loss or anemia. If the pellets pass, the bird may recover although it is at higher risk of predation or accidental trauma while exposed. At elevated levels, anorexia, impacted gizzard or proventriculus, reproductive or neurological impairment, or immune suppression may result. At very high levels, paralysis of the digestive tract, wings, or legs occurs. The bird may be unable to eat, digest food, walk, swim, or fly, eventually starving (30-40% weight loss) or becoming subject to predation (Hohman et al. 1995).

To ascertain the prevalence of lead poisoning, a variety of researchers have counted the number of pellets present in avian gizzards by x-raying or flouroscoping live birds or examining gizzard/digestive tract contents of carcasses. However, such studies may underestimate lead prevalence, as lead pellets may be expelled or fully dissolved before a bird dies of lead poisoning (Best et al. 1992a). For example, only 14% of lead poisoned Bald Eagles (*Haliaeetus leucocephalus*) had lead shot in their digestive tracts upon necropsy (Feierabend and Myers 1984). A variety of other techniques have been applied to measure lead exposure in an attempt to correct for the deficiencies of gizzard counts (see Table 4).

While the mechanisms of lead poisoning are well understood, poisoning rates are not. Die-offs of abundant and gregarious species (such as geese or swans) are highly visible, but the daily losses are rarely observed. Poisoned birds isolate themselves, seeking dense cover where they go unnoticed (Sanderson and Bellrose 1986). In an experiment, observers were given 30 minutes to find 100 carcasses planted in a marsh; they only discovered six (Stutzenbaker et al. 1983). Predation and scavenging often occur within hours or days of the onset of severe symptoms or death, further reducing the number of poisoned birds recovered. When researchers planted carcasses in a wetland, 62% were gone in four days (Humburg et al. 1983). In a similar study, 62% of planted carcasses were gone in three days, 91% in eight days (Stutzenbaker et al. 1983). Because, it is extremely difficult to account for individual cases of lead poisoning, describing

population-level effects of lead poisoning are even more problematic (Sanderson and Bellrose 1986, Washington Department of Fish and Wildlife Nontoxic Shot Working Group 2001).

Secondary Lead Poisoning Associated with Hunting

Concern over secondary lead poisoning originally coalesced around the relationship between waterfowl and Bald Eagles. Bald Eagles may gather in waterfowl hunting areas and scavenge unretrieved carcasses or prey on crippled ducks or ducks carrying embedded shot (Elder 1955, Redig et al. 1980, Pattee and Hennes 1983, USFWS 1986)¹. To determine lead exposure in eagles, researchers examined castings found at roosting sites near waterfowl hunting areas. Up to 70% of eagle castings contained lead pellets, suggesting that lead exposure is limited by the regurgitation mechanism that evacuates shot with other undigestable materials (Pattee et al. 1981). However, not all shot is expelled and eagles have ample opportunity for re-exposure during hunting season.² Indeed, exposed eagles may suffer impaired hunting ability, causing them to scavenge more and increasing the chances of re-exposure (Redig 1984). Lead poisoning of raptors, like that of waterfowl, occurs seasonally with most mortalities taking place in late fall and early winter (Pattee and Hennes 1983, Feierabend and Myers 1984, USFWS 1986, Elliot et al. 1992).

In 1991, the U.S. Fish and Wildlife Service banned lead shot for waterfowl hunting to minimize lead exposure in both waterfowl and Bald Eagles. Lead shot exposure in waterfowl appears to be decreasing dramatically, but eagles are exposed to lead at pre-ban rates (Table 5) (Kramer and Redig 1996, Anderson et al. 2000). To explain these persistent exposure rates, researchers are exploring alternative lead sources, as waterfowl only comprise a portion of eagle diets. Bald eagles also feed on fish, upland birds, small mammals, and carrion (Frenzel 1985, Hennes 1985), while Golden Eagles (*Aquila chrysaetos*) feed on ground squirrels, jackrabbits, upland birds, and big-game carcasses (Ohlendorff 1976, Platt 1976, Frenzel 1985, Harmata 1990, Harmata and Restani 1995). Harmata and Restani (1995) believe that the continued use of lead shot in upland game hunting and lead bullets in plinking and big game hunting is a significant cause of lead poisoning of Golden and some Bald Eagles. Plinking involves shooting prairie dogs, ground squirrels, and rabbits. Plinkers shoot several animals in a day and typically leave the carcasses in the field, exposing Golden and some Bald Eagles to lead. Up to 30 Golden Eagles have been observed following plinkers from field to field, scavenging ground squirrels after the shooters had moved on (Harmata and Restanin 1995). Scavengers are also exposed to lead fragments from slugs used in big game hunting. Slugs are designed to shatter on impact, killing the animal instantly (ideally) by creating massive internal injuries. Scavengers may be exposed to lead slugs when consuming carcasses that are unrecovered (i.e. coyotes (*Canis latrans*) or injured ungulates) or gut piles that are left in the field.

¹ Shot embedded in tissues of apparently healthy individuals has been documented in a number of avian species. For example, 19% of Canvasbacks carried as many as 9 lead pellets embedded in their tissues (Perry and Geissler 1980). Havera et al. (1992) found a 15% imbedded shot rate for Canvasbacks and 9% rate for Lesser Scaups (*Aythya affinis*). Some 27% of Ring-Necked Pheasants (*Phasianus colchicus*) carried embedded shot (Elder 1955).

² Lead exposure occurs when raptors consume metallic lead as shot or sinkers imbedded in tissue or retained in the digestive tracts of prey animals. Significant exposure does not occur when raptors feed on lead that has bioaccumulated in the tissue of prey animals (Stendell 1980, Custer et al. 1984, Franson et al. 1983).

The California Condor Recovery Team (2001) concluded that lead poisoning has been the leading cause of the decline in endangered California Condor (*Gymnogyps californianus*) populations in the last 50 years. Condors, as scavengers, feed on carcasses and gut piles left in the field, seeking soft tissues and small hard objects, such as calciumrich bone, when feeding (Snyder and Snyder 2000). This puts them at especially high risk for lead ingestion. Further, Condors do not typically regurgitate castings, a mechanism that mitigates shot exposure in Bald Eagles. Four condors died of lead poisoning after feeding on gut piles in the Vermillion Cliffs region of Arizona in 2000. An additional 35% of released condors have experienced acute lead poisoning over the past 20 years (Weimeyer et al. 1988, Risebrough et al. 2001).

Lead Exposure from Fishing Tackle

Lead poisoning due to fishing tackle has been documented in 25 species of water birds and in sensitive species including Common Loons (*Gavia immer*), Trumpeter Swans, Mississippi Sandhill Cranes (*Grus canadensis*), and Bald Eagles (see Table 6). In New England, poisoning from lead weights and jigs is the greatest source of loon mortality, accounting for 50% of adult deaths (Pokras and Chafel 1992). Likewise, in Canada, 30% of adult loon mortality is due to lead poisoning resulting from sinker ingestion (Scheuhammer and Norris 1996). Ensor et al. (1992) found that 17% of adult loon deaths in Minnesota could be traced to lead poisoning from fishing tackle. Lead poisoning, sometimes caused by sinkers, is also a significant mortality factor for the Trumpeter Swan (Blus 1994).

Lead split shot comprises 50% of the sinker market in the United States (USEPA 1994). These tiny, round BBs can be difficult to handle and anglers often lose several sinkers for each one successfully attached to the line. Further, sinkers are lost when anglers cast or break their lines to free them from submerged snags. With more than 2,700 tons of lead sinkers sold in the U.S. annually, and an additional 400-550 tons sold in Canada, accidental sinker loss results in a substantial amount of lead deposition in wetland environments (USEPA 1994, Scheuhammer and Norris 1995). There, it is available to foraging wildlife that may mistake it for grain, grit, insects, or fish.

Anglers lose lead sinkers, jigs, and lead-weighted flies in fish themselves. Hooked fish can free themselves by breaking a line or pulling tackle loose. Such fish often carry tackle in their mouths or digestive tracts. Fish are not subject to "dietary" lead poisoning (Hodson et al. 1978) and lead tackle typically dissolves. However, predators that take fish containing tackle can ingest metallic lead, becoming susceptible to secondary lead poisoning. Secondary lead poisoning due to fishing tackle has been documented in Bald Eagles, Common Loons, Common Mergansers (*Mergus merganser*), and Red-breasted Mergansers (*Mergus serrator*) (USFWS 1994). It is highly likely that Osprey (*Pandion haliaetus*), which feed exclusively on fish, are regularly exposed to lead as well.³

³ The effects of lead fishing tackle on aquatic systems have not been well investigated (Scheuhammer and Norris 1995).

Lead Deposition from Trap and Skeet Shooting

Few studies exist on lead contamination associated with trap and skeet ranges. However, with pellet densities potentially numbering in the billions per acre and as much as 30 tons of lead being shot annually at a single range, contamination is a strong possibility (Scheuhammer and Norris 1995, Kendall et al. 1996).⁴ At the wooded Patuxent Refuge Trap and Skeet Range, researchers found up to 4,000 pellets in soil samples ~3 inches in diameter (Vyas et al. 2000). Soil lead levels ranged from 110-27,000 ppm, more than three times the rate at toxic mine sites. For example, sediments from lead and other heavy metal mines on the Coeur d'Alene River in Idaho exhibited soil lead levels of 2,000-8,000 ppm. Songbirds feeding on seeds and earthworms (*Lumbricus rubellis*) in an enclosure at the Patuxent range exhibited high exposure levels and several died during the study (see Table 7). Earthworms at the range contained body burdens of 660-840 ppm, a toxicologically significant amount.

Many ranges occur adjacent to bodies of water. Due to lead contamination of nearby waterways, several ranges have been closed or undertaken cleanup operations. Elevated lead levels associated with contamination from ranges have been documented in aquatic invertebrates, bloodworms, clams, mussels, snails, sunfish, and bass (reviewed in Scheuhammer and Norris 1995). Rainbow trout (*Salmo gardinieri*) are susceptible to lead poisoning from water-borne lead at relatively low concentrations of 1-10 mg 1⁻¹ (Hodson et al. 1978). The most severe symptom of lead toxicosis in trout is spinal curvature which depresses reproductive success, causes tail atrophy, and may result in death. Finally, aquatic plants may uptake lead from contaminated sediments. Most lead remains in the roots, although some may be transported to shoots and fruit as well (Behan et al. 1979).

Legislation Regulating Lead Ammunition and Tackle

The 1991 federal ban on lead shot occurred for several reasons. First, the extensive research on lead poisoning of waterfowl indicated that millions of ducks and geese were dying of lead poisoning each year. Clearly, this was a concern to hunters and game managers who wanted to maximize waterfowl harvests. Endangered Bald Eagles preying or scavenging on poisoned waterfowl was further cause for alarm. Both the Endangered Species Act and the Bald and Golden Eagle Act mandated that the Secretary of the Interior must act to safeguard eagle populations (see Table 8). After 20 years of regulatory wrangling, the USFWS phased in a complete ban on lead shot for taking waterfowl during the 1991-1992 hunting season (Federal Regulation 50 C.F.R. 20). Since then, lead poisoning of loons, swans, upland game, and the continued poisoning of eagles has prompted additional restrictions on lead shot and lead fishing tackle on National Parks, National Wildlife Refuges, and on public lands in 25 states. Similar restrictions are in place on Canadian National Parks and National Wildlife Areas. Finally, Maine, New Hampshire, and New York have established statewide bans on the sale and/or use of lead sinkers and jigs in the sizes that are most likely to be ingested by wildlife.

The Clean Water Act, The Resource Conservation and Recovery Act, and The Toxic Substances Control Act have been invoked to curb lead shot use at trap and skeet ranges across the U.S. Because lead deposition can occur in the

⁴ For an in-depth explanation of how lead binds with water and soils see National Shoot Sports Foundation (1996).

thousands of tons at a single range and many ranges are situated adjacent to water, concern over toxic contamination has prompted massive clean up efforts or range closures. Indeed, range closures seem to precede judicial action so that the exercise of these acts to mandate changes at shooting ranges has rarely been tested.

Waterfowl Mortalities Since the 1991 Ban on Lead Shot in Waterfowl Hunting

Overall shot ingestion rates by waterfowl have remained constant since the 1991 ban (Anderson et al. 1987). As steel has replaced lead as the prominent shot used in waterfowl hunting, birds are ingesting more steel and less lead (see Table 9). For example, Mallard lead-poisoning mortality has diminished by 64% in the Mississippi Flyway (Anderson et al. 2000). Likewise, there has been a 44% decline in lead exposure of American Black Ducks during the same period (Samuel and Bowers 2000). Other researchers have found that although nontoxics are reducing the numbers of birds suffering from lead poisoning, many continue to be exposed to lead in wetlands due to the prevalence of historic lead deposits and the continued use of lead shot in other sports (DeStefano 1995, Hohman et al 1995). This is evident from a recent Trumpeter Swan die-off in Washington (Washington Department of Fish and Wildlife Nontoxic Shot Working Group 2001).

Certainly, the risk of lead poisoning will persist as long as spent lead shot remains in the environment, potentially 100 to 300 years (Kendall et al. 1996). However, preliminary data is hopeful. Early assessments indicate the ban on lead shot has been successful in terms of reducing wildlife lead poisoning and hunter compliance with regulations, at rates ranging from 90-98% (Havera et al. 1994, Scheuhammer and Norris 1996). It is likely that the ongoing shift to nontoxics in upland game hunting will produce similar benefits for wildlife and habitat.

Nontoxic Hunting Ammunition

The post-ban conversion to steel shot was problematic. Early tests on steel shot produced high crippling rates and scouring effects in shotgun barrels (Carmichael 2002). The results of these tests impacted public opinion tremendously. Though high crippling rates were also typical of lead shot (USFWS 1985) and many gun barrels had already been damaged by lead magnum loads (Carmichael 2002), hunters rejected steel because of beliefs about its ballistic inferiority and fear that their guns would be damaged by the hard steel pellets. For example, Szycmack (1978) found that goose hunters in Colorado believed that they were crippling rates were actually declining with steel. Szycmack believed the hunters were responding to adverse publicity and their lack of prior experience with steel. In Ohio, hunters felt that steel crippled more birds and reduced their take and they did not support a ban on lead (Smith and Townsend 1981).

Such concerns persist despite continued improvement of steel shot technology and data acknowledging differences in ballistic properties between lead and steel yet equating their performance. Scheuhammer and Norris (1995) reviewed 16 studies conducted between 1950 and 1984 comparing steel and lead shot. They found that three tests favored lead, two favored steel, two evidenced mixed results, and eight showed no difference between the shot types. One highly

publicized study in Louisiana indicated that hunters had less success and crippled more birds with steel (Hebert et al. 1984). However, because hunters had not been informed of what type of shot they were using, they had difficulty making appropriate adjustments (e.g. changing chokes and altering lead time). Further, it is unclear if the hunters had ever shot steel, let alone done so proficiently. This study was essentially a comparison of shooting performance between seasoned lead shooters and inexperienced steel shooters, rather than a comparison of shot types. Mikula et al. (1977) argued that hunters' attitudes fostered their poor performance with steel shot citing unreasonable ranges, unwillingness to hunt with retrieving dogs, and lack of shooting skills as reasons that steel shot appeared to perform comparatively poorly. This poorer performance could have yielded higher crippling rates.

Nevertheless, the search to emulate lead's properties stimulates the proliferation of other nontoxic alternatives for waterfowl hunting (Table 10).⁵ Steel continues to be the most popular, and least expensive, alternative to lead. A variety of other shot types are also available. Bismuth and tungsten alloys more closely simulate lead and thus provide lead's killing power (especially at longer distances). In fact, Hevi-Shot, a new tungsten matrix, may *outperform* lead. Because of their accuracy and impact, newer alloys are gaining popularity. However, they cost at least twice as much as steel and lead shot (see Table 11). Early steel prices were quite high but increased demand helped reduce prices over time. As demand increases and subsequent production costs fall, new nontoxics are likely to become more affordable as well. Further, an ever-expanding array of gauges, sizes, and weights of nontoxic ammunition are becoming available (and occasionally required).

Certainly, the individual hunter's ammunition costs may rise with adoption of nontoxics but this increase may be comparatively small. For example, the average waterfowler only takes 6 ducks annually (USFWS 1986). Typically, 6 shots are taken per bird bagged, requiring 36 shot shells. Although nontoxics can be substantially more expensive than lead shot, the actual increase in cost of nontoxics in the field ranges from ~\$2.00-\$75.00 annually, a small percentage of the waterfowler's yearly hunting expenditures (Scheuhammer and Norris 1995).

Nontoxic Fishing Tackle

In 1994, the EPA proposed a ban on the manufacture, sale, and use of lead fishing tackle. The Agency found that even a single lead sinker can produce lethal lead poisoning and in sensitive species even individual mortalities can have population-level effects. The loss of thousands of tons of sinkers in the environment every year also creates ample opportunity for water and soil contamination. Finally, the Agency stated that as many as 1,600,000 people make approximately 900 tons of lead sinkers at home for personal use or for sale as part of a "cottage industry" thereby exposing themselves and their families to lead dust and vapors. Although the symptoms of lead poisoning in humans tend to be subtle, hypertension, miscarriage, and childhood brain damage may result from repeated exposure.

⁵ Toxicity tests on bismuth and tungsten alloys indicate that these substances are nontoxic to wildlife (Sanderson et al. 1992, Ringelman et al. 1993, Kraabel et al. 1996, Sanderson et al. 1997, Kelly et al. 1998, Risebrough et al. 2001)

Although no actions have been taken on the EPA's proposed ruling, the National Park Service and the National Wildlife Refuge System have begun to ban the use of lead fishing tackle on some parks and refuges. Most notably, it is illegal to use lead sinkers in Yellowstone National Park, an important breeding site for the Trumpeter Swan. Likewise, Canada has prohibited the use of lead tackle on all National Parks and National Wildlife Areas. And Maine, New Hampshire, and New York have recently banned the sale/use of some sinkers.

To meet growing demand, an increasing number of nontoxic alternatives are available.⁶ Water Gremlin, the leading sinker maker in the U.S., has established the Gremlin Green line of nontoxic sinkers. BulletWeights produces an array of steel sinkers and jigs. Tungsten, bismuth, and antimony work as well or better than lead for weights and weighted eyes. And Dinsmore's reusable tin split shot sinkers, which can be clamped onto the line and reused, are proving effective (and, for some, easier to handle than lead split shot). Another option is putty (e.g. Loon Outdoors Deep Soft Weight) that is malleable as it is applied to the line, hardening when it is submerged. Other, less widely used materials include recycled glass, ceramics, and plastic.

The economic impact of the switch to nontoxic sinkers will be nominal (see Table 12). The EPA (1994) reports that the average angler spends \$1.50-\$3.50 on sinkers annually. Nontoxic sinkers could increase that cost by up to \$4.00 (the price of three flies, two spoons, or two spinners), which is still a small fraction of the anglers' equipment costs and an even smaller fraction of total costs. Similarly, when the National Wildlife Refuge System implemented "Lead-Free Fishing Areas," they acknowledged that nontoxics sometimes cost more than lead weights but stated that as sinkers only comprise 3% of yearly equipment costs, the increase did not create a burden for anglers (Federal Regulation 50 CFR 32 and 36, proposed rule).

Lead Management at Shooting Ranges

The National Shooting Sports Foundation range management guidelines (1997) strongly encourage range managers to mitigate the impacts of lead and avoid lead contamination of soils and ground and surface water. A number of design elements can minimize the possibility of lead dissolving in water and binding with soils particles. Directing runoff, adding clay layers to create impermeable soil surfaces, mixing phosphate or lime with soils, and landscaping with plants that bioaccumulate lead all minimize lead mobility at shooting ranges. Perhaps the most cost-effective approach is recovering and recycling lead shot. Finally, range managers are encouraged to protect wildlife by creating undesirable habitat, removing edible vegetation, and protecting water supplies. The National Rifle Association, Amateur Trapshooting Association, National Skeet Shooting Association, and National Sporting Clays Foundation encourage range managers to design and manage ranges according to these guidelines.

⁶ Zinc, copper, and brass sinkers are not viable options as they are toxic themselves. Brass is composed of lead, zinc, and copper, all of which are toxic to wildlife when ingested (USEPA 1994).

Conclusion

Hunting and fishing result in the deposition of thousands of tons of lead into the North American environment every year. While foraging, wildlife species can be exposed to lead and may die of lead poisoning. Such mortalities have been documented in a wide array of birds including waterfowl, shorebirds, piscivores, songbirds, and raptors. Poisoning of California Condors, Common Loons, Trumpeter Swans, and Bald Eagles is of special concern because it may have population-level effects. Recent research reveals that legislation banning the use of lead shot in waterfowl hunting has reduced the amount of waterfowl lead poisoning and the extent of Bald Eagle lead poisoning. Such declines demonstrate that switching to nontoxic shot can protect wildlife populations and improve the environment. Similar regulations are being established to minimize lead deposition associated with upland game hunting and fishing. Available alternatives provide hunters and anglers with options that allow them to perform well, to excel at their sport, and to minimize lead exposure to wildlife. Because hunters and anglers cherish the outdoors and value wildlife, they may find that the increased cost of ammunition and tackle is offset by the knowledge that they are helping to protect wildlife from lead poisoning. This recognition may begin to fuel voluntary shifts to nontoxics in areas without regulatory restrictions. To facilitate such shifts, HawkWatch will engage in an outreach effort to expose sports enthusiasts to the dangers of lead tackle and ammunition and to the benefits of using nontoxic alternatives.

Literature Cited

Anderson, W. L. 1975. "Lead poisoning in waterfowl at Rice Lake, Illinois." Journal of Wildlife Management 39(2):264-270.

Anderson, W. L. and S. P. Havera. 1985. "Blood lead, protoporphyrin, and ingested shot for detecting lead poisoning in waterfowl." <u>Wildlife Society Bulletin</u> 13(1):26-31.

Anderson, W. L., S. P. Havera, and R. A. Montgomery. 1987. "Incidence of ingested shot in waterfowl in the Mississippi Flyway, 1977-1979." <u>Wildlife Society Bulletin</u> 15(2):181-188.

Anderson, W. L., S. P. Havera, and B. W. Zercher. 2000. "Ingestion of lead and nontoxic shotgun pellets by ducks in the Mississippi Flyway." Journal of Wildlife Management 64(3):848-857.

Artmann, J. W. and E. M. Martin. 1975. "Incidence of ingested lead shot in Sora Rails." Journal of Wildlife Management 39(3):514-519.

Behan, M. J., T. B. Kinraide, and W. I. Selser. 1979. "Lead accumulation in aquatic plants from metallic sources including shot." Journal of Wildlife Management 43(1):240-244.

Bellrose, F. C. 1959. "Lead poisoning as a mortality factor in waterfowl populations." <u>Illinois Natural History Survey</u> <u>Bulletin</u> 27:235-288.

Best, T. L., T. E. Garrison, and C. G. Schmitt. 1992a. "Availability and ingestion of lead shot by Mourning Doves (*Zenaida macroura*) in southeastern New Mexico." <u>Southwestern Naturalist</u> 37(3):287-292.

Best, T. L., T. E. Garrison, and C. G. Schmitt. 1992b. "Ingestion of pellets by Scaled Quail (*Callipepla squamata*) and Northern Bobwhite (*Colinus virginianus*) in Southeastern New Mexico." <u>Texas Journal of Science</u> 44(1):99-107.

Blus, L. J. 1994. "A review of lead poisoning in swans." Comparative Biochemical Physiology 108(C):259-267.

Bowles, J. H. 1908. "Lead poisoning in ducks." Auk 25(3):312-313.

Buerger, T. T., R. E. Mirarchi, and M. E. Lisano. 1986. "Effects of lead shot ingestion on captive Mourning Dove survivability and reproduction." Journal of Wildlife Management 50(1):1-8.

California Condor Recovery Team. 2001. <u>Exposure to Lead of California Condors</u>, *Gymnogyps californianus*, <u>Reintroduced to the Wild</u>. U.S. Fish and Wildlife Service.

Campbell, H. 1950. "Quail picking up lead shot." Journal of Wildlife Management 14(2):243-244.

Carmichael, J. 2002. "After the ban." Outdoor Life February/March 20-23.

Castrale, J. S. 1989. "Availability of spent lead shot in fields managed for Mourning Dove hunting." <u>Wildlife Society</u> <u>Bulletin</u> 17(2):184-189.

Coon, N. C., L. N. Locke, E. Cromartie, and W. L. Reichel. 1969. "Causes of Bald Eagle mortality, 1960-1965." Journal of Wildlife Disease 6:72-76.

Craig, T. H., J. W. Connelly, E. H. Craig, and T. L. Palmer. 1990. "Lead concentrations in Golden and Bald Eagles." <u>Wilson Bulletin</u> 102(1):130-133.

Craig, E. H., T. H. Craig, and A. E. Thomas. 1994. "Lead levels in Golden Eagles in Southeastern Idaho." Abstract. <u>Proceedings Raptor Research Foundation Annual Meeting</u>, Flagstaff, AZ.

Custer, T. W., J. C. Franson, and O. H. Pattee. 1984. "Tissue lead distribution and hematologic effects in American Kestrels (*Falco sparverius L.*) fed biologically incorporated lead." Journal of Wildlife Diseases 20(1):39-43.

DeStefano, S., C. J. Brand, and M. D. Samuel. 1995. "Seasonal ingestion of toxic and nontoxic shot by Canada Geese." Wildlife Society Bulletin 23(3):502-506.

Eisler, R. 1988. <u>Lead Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review</u>. U.S. Department of the Interior, Biological Report 85(1.14).

Elder, W. H. 1955. "Flouroscope measures of hunting pressure in Europe and North America." <u>Transactions of the</u> North American Wildlife Conference 20:298-322.

Elliott, J. E., K. M. Langelier, A. M. Scheuhammer, P. H. Sinclair, and P. E. Whitehead. 1992. <u>Incidence of Lead</u> <u>Poisoning in Bald Eagles and Lead Shot in Waterfowl Gizzards from British Columbia</u>, 1988-1991. Canadian Wildlife Service, Progress Notes, No. 200, Ottawa, Ontario, Canada.

Ensor, K. L., D. D. Helwig, and L. C. Wemmer. 1992. <u>Mercury and Lead in Minnesota Common Loons (*Gavia immer*)</u>. Water Quality Division, Minnesota Pollution Control Agency, St. Paul, MN.

Esslinger, C. G. and W. D. Klimstra. 1983. "Lead shot incidence on a public goose hunting area in southern Illinois." <u>Wildlife Society Bulletin</u> 11(2):166-169.

Feierabend, J. S. and O. Myers. 1984. <u>A National Summary of Lead Poisoning in Bald Eagles and Waterfowl</u>. National Wildlife Federation, Washington, DC.

Finley, M. T. and M. P. Dieter. 1978. "Toxicity of experimental lead-iron shot versus commercial lead shot in Mallards." Journal of Wildlife Management 42(1):32-39.

Franson, C. J. 1996. "Interpretations of tissue lead residues in birds other than waterfowl." Pages 265-279 in W. N. Beyer, G. H. Heinz, and A. W. Redmon-Norwood (eds.), <u>Environment Contaminants in Wildlife: Interpreting Tissue Concentrations</u>. Lewis Publishers, Boca Raton, FL.

Franson, J. C. and S. G. Hereford. 1994. "Lead poisoning in a Mississippi Sandhill Crane." <u>Wilson Bulletin</u> 106:766-768.

Franson, J. C., L. Sileo, O. H. Pattee, and J. F Moore. 1983. "Effects of chronic dietary lead in American Kestrels (*Falco sparverius*)." Journal of Wildlife Diseases 19(2):110-113.

Franson, J. C., L. Sileo, and N. J. Thomas. 2002. <u>Causes of Eagle Deaths</u>. National Biological Survey, National Wildlife Health Center, Madison, WI.

Franson, J. C., N. J. Thomas, M. R. Smith, A. H. Robbins, S. Newman, and P C. McCartin. 1996. "A retrospective study of postmortem findings in Red-tailed Hawks." Journal of Raptor Research 30(1):7-14.

Fredrickson, L. H., T. S. Baskett, G. K. Brakhage, and V. C. Cravens. 1977. "Evaluating cultivation near duck blinds to reduce lead poisoning hazard." Journal of Wildlife Management 41(4):624-631.

Frenzel, R. W. 1985. <u>Environmental Contaminants and Ecology of Bald Eagles in Southcentral Oregon</u>. Ph.D. Dissertation. Oregon State University, Eugene, OR.

Frenzel, R. W. and R. G. Anthony. 1989. "Relationship of diets and environmental contaminants in wintering Bald Eagles." Journal of Wildlife Management 53(3):792-802.

Grandy, J. W., IV, L. N. Locke, and G. E. Bagley. 1968. "Relative toxicity of lead and five proposed substitute shot types to pen-reared Mallards." Journal of Wildlife Management 32(3):483-488.

Grinnell, G. B. 1894. "Lead poisoning." Forest and Stream 42(6):117-118.

Harmata, A. R. 1990. <u>Dynamics of Migration, Heavy Metal Contamination, Incidence of Hematological Parasites, and Effects of Local Agricultural Practices on Eagles in West-central Montana</u>. M.S. Thesis, Montana State University, Bozeman, MT.

Harmata, A. R. 1993. <u>Heavy Metal and Pesticide Contamination of Bald and Golden Eagles in the Western United</u> <u>States</u>. Report to the U.S. Environmental Protection Ageeny.

Harmata, A. R. and M. Restani. 1995. "Environmental contaminants and Cholinesterase in blood of vernal migrant Bald and Golden Eagles in Montana." Intermountain Journal of Sciences 1(1):1-15.

Havera, S. P., W. L. Anderson, and S. G. Wood. 1989. "Use of blood from dead Mallards to monitor lead poisoning." Wildlife Society Bulletin 17(3):241-244.

Havera, S. P., C. S. Hine, and M. M. Georgi. 1994. "Waterfowl hunter compliance with nontoxic shot regulations in Illinois." <u>Wildlife Society Bulletin</u> 22:454-460.

Havera, S. P., R. M. Whitton, and R. T. Shealy. 1992. "Blood lead and embedded shot in diving ducks during spring." Journal of Wildlife Management 56(3):539-545.

Hebert, C. E., V. L. Wright, P. J. Zwank, J. D. Newman, and R. L. Kasul. 1984. "Hunter performance using steel and lead loads for hunting ducks in coastal Louisiana." Journal of Wildlife Management 48(2):388-398.

Hennes, S. K. 1985. <u>Lead Shot Ingestion and Lead Residues in Migrant Bald Eagles at Lac Qui Parle Wildlife</u> <u>Management Area, Minnesota</u>. MS Thesis, University of Minnesota, St. Paul, MN.

Hodson, P. V., B. R. Blunt, and D. J. Spry. 1978. "Chronic toxicity of water-borne and dietary lead to Rainbow Trout (*Salmo gairdneri*) in Lake Ontario water." <u>Water Research</u> 12:869-878.

Hoffman, D. J., O. H. Pattee, S. N. Wiemeyer, and B. M. Mulhern. 1981. "Effects of lead shot ingestion on δ -aminolevulinic acid dehyratase activity, hemoglobin concentration, and serum chemistry in Bald Eagles." Journal of Wildlife Disease 17:423-431.

Hohman, W. L., J. L. Moore, and J. C. Franson. 1995. "Winter survival of immature Canvasbacks in inland Louisiana." Journal of Wildlife Management 59(2):384-392.

Hough, E. 1894. "Lead poisoned ducks." Forest and Stream 42(6):117.

Humburg, D. D., D. Graber, S. Sheriff, and T. Miller. 1983. "Estimating autumn-spring waterfowl nonhunting mortality in north Missouri." North American Wildlife and Natural Resources Conference Transactions 48:241-256.

Hunter, B. F. and M. N. Rosen. 1965. "Occurrence of lead poisoning in a wild pheasant (*Phasianus colchicus*)." California Fish and Game 51(3):207.

Kaiser, T. E., W. L. Reichel, L. N. Locke, E. Cromartie, A. J. Krynitsky, T. G. Lamont, B. M. Mulhern, R. M. Prouty, C. J. Stafford, and D. M. Swineford. 1980. "Organochlorine pesticides, PCB, and PBB residues and necropsy data for bald eagles from 29 states—1975-1977." <u>Pesticide Monitoring</u> 14:145-149.

Kelly, M. E., S. D. Fitzgerald, R. J. Aulerich, R. J. Balander, D. C. Powell, R. L. Stickle, W. Stevens, C. Cray, R. J. Tempelman, and S. J. Bursian. 1998. "Acute effects of lead, steel, tungsten-iron, and tungsten polymer shot administered to game-farm mallards." Journal of Wildlife Disease 34:673-687.

Kendall, R. J., T. E. Lacher, C. Bunck, B. Daniel, C. Driver, C. E. Grue, F. Leighton, W. Stansley, P. G. Watanabe, and M. Whitworth. 1996. "An ecological risk assessment of lead shot exposure in non-waterfowl avian species: upland game birds and raptors." <u>Environmental Toxicology and Chemistry</u> 15(1):4-20.

Kimball, W. H. and Z. A. Munir. 1971. "The corrosion of lead shot in a simulated waterfowl gizzard." <u>Journal of Wildlife Management</u> 35(2):360-365.

Kraabel, B. J., M. W. Miller, D. M. Getzy, and J. K. Ringelman. 1996. "Effects of embedded tungsten-bismuth-tin shot and steel shot on mallards (*Anas platyrhynchos*)." Journal of Wildlife Disease 32:1-8.

Kramer, J. L. and P. T. Redig. 1997. "Sixteen years of lead poisoning in eagles, 1980-1995: an epizootiologic view." Journal of Raptor Research 31(4):327-332.

Lewis, J. C. and E. Legler, Jr. 1968. "Lead shot ingestion by Mourning Doves and incidence in soil." <u>Journal of Wildlife</u> <u>Management</u> 32(3):476-482.

Lewis, L. A., R. J. Poppenga, W. R. Davidson, J. R. Fischer, and K. A. Morgan. 2001. "Lead toxicosis and trace element levels in wild birds and mammals at a firearms training facility." <u>Archives of Environmental Contaminants and</u> <u>Toxicology</u> 41:208-214.

Locke, L. N. and G. E. Bagley. 1967. "Lead poisoning in a sample of Maryland Mourning Doves." <u>Journal of Wildlife</u> <u>Management</u> 31(3):515-518.

Locke, L. N. and N. J. Thomas. 1996. "Lead Poisoning of waterfowl and raptors." Pages 108-117 in A. Fairbrother, L. N. Locke, and G. L. Hoff (eds.), <u>Non-infectious Diseases of Wildlife</u>. Iowa State University Press, Ames, IA.

Longcore, J. R., P. O. Corr, and H. E. Spencer. 1982. "Lead shot incidence in sediments and waterfowl gizzards from Merrymeeting Bay, Maine." <u>Wildlife Society Bulletin</u> 10(1):3-10.

McAtee, W. L. 1908. "Lead poisoning in ducks." Auk 25(4):472.

Mikula, E. J., G. F. Martz, and L. A. Ryel. 1977. "A comparison of lead and steel shot for waterfowl hunting." <u>Wildlife</u> <u>Society Bulletin</u> 5(1):3-8.

Miller, M. J. R., M. Restani, A. R. Harmata, G. R. Bortolli, and M. E. Wayland. 1998. "A comparison of blood lead levels in Bald Eagles from two regions of the Great Plains of North America." Journal of Wildlife Diseases 34(4):704-714.

Miller, M. J. R., M. E. Wayland, and G. R. Bortolli. 2001. "Exposure of migrant Bald Eagles to lead in prairie Canada." Environmental Pollution 112:153-162.

Miller, M. J. R., M. E. Wayland, E. H. Dzus, and G. R. Bortollis. 2000. "Availability and ingestion of lead shotshell pellets by migrant Bald Eagles in Saskatchewan." Journal of Raptor Research 34(3):167-174.

Montablano, F. and T. C. Hines. 1978. "An improved x-ray technique for investigating ingestion of lead by waterfowl." <u>Proceedings of Annual Conference of Southeastern Fish and Wildlife Agencies</u> 32:364-368.

Munro, J. A. 1925. "Lead poisoning in Trumpeter Swans." Canadian Field Naturalist 39(7):160-162.

National Shooting Sports Foundation. 1996. <u>Lead Mobility at Shooting Ranges</u>. Facility Deveopment Series #1, Newton, CN.

National Shooting Sports Foundation. 1997. <u>Environmental Aspects of Construction and Management of Outdoor</u> <u>Shooting Ranges</u>. Facility Development Series #2. Newton, CN.

Ohlendorff, R. R. 1976. "The food habits of North American Golden Eagles." <u>American Midatlantic Naturalist</u> 95:231-236.

Pattee, O. H., P. H. Bloom, J. M. Scott, and M. R. Smith. 1990. "Lead hazards within the range of California Condors." <u>Condor</u> 92:931-937.

Pattee, O. H. and S. K. Hennes. 1983. "Bald Eagles and waterfowl: the lead shot connection." <u>Transactions of the North</u> <u>American Wildlife and Natural Resources Conference</u> 48:230-237.

Pattee, O. H., S. N. Wiemeyer, B. M. Mulhern, L. Sileo, and J. W. Carpenter. 1981. "Experimental lead-shot poisoning in Bald Eagles." Journal of Wildlife Management 45(3):806-810.

Perry, M. C. and J. W. Artmann. 1979. "Incidence of embedded and ingested shot in oiled Ruddy Ducks." Journal of Wildlife Management 43(1):266-269.

Perry, M. C. and P. H. Geissler. 1980. "Incidence of embedded shot in Canvasbacks." Journal of Wildlife Management 44(4):888-894.

Platt, J. B. 1976. "Bald Eagles wintering in the Utah desert." American Birds 30:783-788.

Pokras, M. A. and R. Chafel. 1992. "Lead toxicosis from ingested lead sinkers in adult Common Loons (*Gavia immer*) in New England." Journal of Zoo and Wildlife Medicine 23(1):92-97.

Redig, P. T. 1984. <u>An Investigation into the Effects of Lead Poisoning on Bald Eagles and Other Raptors: Final Report</u>. Minnesota Endangered Species Program Study 100A-100B, St. Paul, MN.

Redig, P. T. 1985. Medical Management of Birds of Prey. The Raptor Center, University of Minnesota, St. Paul, MN.

Redig, P. T., C. M. Stowe, D. M. Barnes, and T. D. Arent. 1980. "Lead toxicosis in raptors." Journal of the American Veterinary Medical Association 177:941-943.

Reiser, M. H. and S. A. Temple. 1981. "Effects of chronic lead ingestion on birds of prey." Pages 21-25 in J. E. Cooper and A. J. Greenwood (eds.), <u>Recent Advances in the Study of Raptor Diseases</u>. Chiron Publishing, West Yorkshire, UK.

Ringelman, J. K., M. W. Miller, and W. F. Andelt. 1993. "Effects of ingested tungsten-bismuth-tin shot on captive Mallards." Journal of Wildlife Management 51:725-732.

Risebrough, R. W., R. Valencia, D. Clendenen, A. Z. Mason, P. H. Bloom, M. P. Wallace, and R. Mesta 2001. <u>Absence of Demonstrable Toxicity to Turkey Vultures, *Cathartes aura*, of Copper and Tungsten-Tin-Bismuth-Composite Pellets. The Bodega Bay Institute, Berkeley, CA.</u>

Roscoe, D. E., L. Widjeskog, and W. Stansley. 1989. "Lead poisoning of Northern Pintail Ducks feeding in a tidal meadow contaminated with shot from a trap and skeet range." <u>Bulletin of Environmental Contamination and Toxicology</u> 42:226-233.

Samuel, M. D. and E. F. Bowers. 2000. "Lead exposure in American Black Ducks after implementation of non-toxic shot." Journal of Wildlife Management 64(4):947-953.

Sanderson, G. C., W. L. Anderson, G. L. Foley, L. M. Skowron, J. D. Brawn, J. W. Seets, and K. L. Duncan. 1997. "Toxicity of ingested bismuth alloy shot in game-farm Mallards." <u>Illinois Natural History Survey Bulletin</u> 34(3 & 4):185-252.

Sanderson, G. C. and F. C. Bellrose. 1986. <u>A Review of the Problem of Lead Poisoning of Waterfowl: Special Publication 4</u>. Illinois Natural History Survey, Champaign, IL.

Sanderson, G. C., S. G. Wood, G. L. Foley, and J. D. Brawn. 1992. "Toxicity of bismuth shot compared with lead and steel shot in game-farm Mallards." <u>Transactions of the North American Wildlife and Natural Resources Conference</u> 57:526-540.

Scanlon, P. F., V. D. Stotts, R. G. Oderwald, T. J. Dietrick, and R. J. Kendall. 1980. "Lead concentrations in livers of Maryland waterfowl with and without ingested lead shot present in gizzards." <u>Bulletin of Environmental Contamination</u> and <u>Toxicology</u> 25:855-860.

Scheuhammer, A. M. 1987. "The chronic toxicity of aluminum, cadmium, mercury, and lead in birds: a review." <u>Environmental Pollution</u> 46:263-295.

Scheuhammer, A. M. 1989. "Monitoring wild bird populations for lead exposure." Journal of Wildlife Management 53(3):759-765.

Scheuhammer, A. M. and S. L. Norris. 1995. <u>A Review of the Environmental Impacts of Lead Shotshell Ammunition</u> and Lead Fishing Weights in Canada. Canadian Wildlife Service, Ottawa, ON.

Scheuhammer, A. M. and S. L. Norris 1996. "The ecotoxicology of lead shot and lead fishing weights." <u>Ecotoxicology</u> 5:279-295.

Scheuhammer, A. M., C. A. Rogers, and D. Bond. 1999. "Elevated lead exposure in American Woodcock (*Scolopax minor*) in eastern Canada." <u>Archives of Environmental Contamination and Toxicology</u> 36:334-340.

Schillinger, J. E. and C. C. Cottam. 1937. "The importance of lead poisoning in waterfowl." <u>Transactions of the North</u> <u>American Wildlife Conference</u> 2:398-403.

Schranck, B. W. and Gary R. Dollahon. 1975. "Lead shot incidence on a New Mexico public hunting area." <u>Wildlife</u> <u>Society Bulletin</u> 3(4):157-161. Schwab, F. E. and R. W. Daury. 1989. "Incidence of ingested lead shot in Nova Scotia waterfowl." <u>Wildlife Society</u> <u>Bulletin</u> 17(3):237-240.

Smith, R. L. and T. W. Townsend. 1981. "Attitudes of Ohio hunters toward steel shot." <u>Wildlife Society Bulletin</u> 9(1):4-7.

Smrchek, J. 1996. <u>Ecological Hazard and Exposure Assessment of Lead Fishing Weights to Birds with a Discussion of Possible Substitutes and the Effects on Birds and Aquatic Organisms: Current Status of the Problem.</u> United States Environmental Protection Agency, Washington, DC.

Snyder, N. F. R. and H. A. Snyder. 2000. <u>The California Condor: A Saga of Natural History and Conservation</u>. Academic Press, San Diego, CA.

Stendell, R. C. 1980. "Dietary exposure of kestrels to lead." Journal of Wildlife Management 44(2):527-530.

Stendell, R. C., J. W. Artmann, and E. Martin. 1980. "Lead residues in Sora Rails from Maryland." Journal of Wildlife Management 44(2):525-527.

Stone, W. B. and S. A. Butkas. 1972. "Lead Poisoning in a wild turkey." New York Fish and Game Journal 25:169.

Stout, I. J. and G. W. Cornwell. 1976. "Nonhunting mortality of fledged North American waterfowl." <u>Journal of Wildlife Management</u> 40(4):681-693.

Stutzenbaker, C. D., K. Brown, and D. Lobpries. 1983. <u>An Assessment of the Accuracy of Documenting Die-offs in a</u> <u>Texas Coastal Marsh. Special Report</u>. Federal Aid Project W-106-R, Texas Parks and Wildlife Department, Austin, TX.

Szymczak, M. R. 1978. "Steel shot use in a goose hunting area in Colorado." Wildlife Society Bulletin 6(4):217-225.

Szymczak, M. R. and W. J. Adrian. 1978. "Lead poisoning in Canada Geese in southeast Colorado." Journal of Wildlife Management 42(2):299-306.

Trost, R. E. 1980. "Ingested shot in waterfowl harvested on the Upper Mississippi National Wildlife Refuge." <u>Wildlife</u> Society Bulletin 8(1):71-74.

USEPA 1994. <u>Lead Fishing Sinkers: Response to Citizens' Petition and Proposed Ban, Proposed Rule.</u> U.S. Environmental Protection Agency, Washington, DC.

USFWS 1985. <u>Steel—Final Environmental Impact Statement</u>. <u>Proposed Use of Steel Shot for Hunting Waterfowl in the</u> <u>U.S</u>. U.S. Fish and Wildlife Service, Washington, DC.

USFWS 1986. <u>Use of Lead Shot for Hunting Migratory Birds in the United States: Final Supplemental Environmental Impact Statement</u>. U.S. Fish and Wildlife Service, Washington, DC.

USFWS 1994. <u>Lead Sinker Ingestion in Avian Species</u>: <u>Division of Environmental Contamination Information Bulletin</u> <u>94-09-01</u>. U.S. Fish and Wildlife Service, Washington, DC.

Van Tyne, J. 1929. "The Greater Scaup affected by lead poisoning." Auk 46(1):103-104.

Vyas, N. B., J. W. Spann, G. H. Heinz, W. N. Beyer, J. A. Jaquette, and J. M. Mengelkoch. 2000. "Lead poisoning of passerines at a trap and skeet range." <u>Environmental Pollution</u> 107:159-166.

Washington Department of Fish and Wildlife Nontoxic Shot Working Group. 2001. <u>Report to the Washington Fish and Wildlife Commission</u>: The Use of Nontoxic Shot for Hunting in Washington. Washington Fish and Game Commission, Olympia, WA.

Wayland, M. and T. Bollinger. 1999. "Lead exposure and poisoning in Bald Eagles and Golden Eagles in the Canadian prairie provinces." <u>Environmental Pollution</u> 104:341-350.

Wayland, M., E. Neugebauer, and T. Bollinger. 1999. "Concentrations of lead in liver, kidney, and bone of Bald and Golden Eagles." <u>Archives of Environmental Contamination and Toxicology</u> 37:267-272.

Westemeier, R. L. 1966. "Apparent lead poisoning in a wild Bobwhite." Wilson Bulletin 78(4):471-472.

White, D. H. and R. C. Stendell. 1977. "Waterfowl exposure to lead and steel shot on selected hunting areas." Journal of Wildlife Management 41(3):469-475.

Wiemeyer, S. N., R. W. Frenzel, R. G. Anthony, B. R. McClelland, and R. L. Knight. 1989. "Environmental contaminants in the blood of western Bald Eagles." Journal of Raptor Research 23(4):140-146.

Wiemeyer, S. N., J. M. Scott, M. P. Anderson, P. H. Bloom, and C. J. Stafford. 1988. "Environmental contaminants in California Condors." Journal of Wildlife Management 52(2):238-247.

Zwank, P. J., V. L. Wright, P. M. Shealy, and J. D. Nelson. 1985. "Lead toxicosis in waterfowl on two major wintering areas in Louisiana." <u>Wildlife Society Bulletin</u> 13(1): 17-26.

Table 1: Estimates of pellet deposition in hunting and shooting areas

Location	Mean pellet densities	Source			
North America	68,900 pellets/acre in waterfowl hunting areas	Bellrose 1959			
United States	~3,700,000,000 pellets/acre at trap, skeet, and sporting clay ranges	Kendall et al. 1996			
New Jersey	w Jersey 87,817,000 pellets/acre in a meadow adjacent to a trap and skeet range				
Maine	40,000 pellets/acre in bay sediments	Longore et al. 1982			
Tennessee	11,000 pellets/acre pre-season 43,600 pellets/acre post-season in a field managed for dove hunting	Lewis and Legler 1968			
Missouri	Fredrickson et al. 1977				
Illinois	Esslinger and Klimstra 1983				
Indiana	Castrale 1989				
New Mexico	40,100 pellets/acre in seasonal marsh (minimum)	Shrank and Dollahan 1975			
New Mexico	Best et al. 1992a				
Washington	344,000 pellets/acre at Skagit Wildlife Area pheasant release site188,000pellets /acre at Voice of America pheasant release site	Washington Fish and Wildlife Nontoxic Shot Working Group, 2001			

Table 2:	Examples of lea	d exposure and le	ead poisoning in	waterfowl due to hunting
----------	------------------------	-------------------	------------------	--------------------------

Spacias	Location	N	Exposuro ratos	Saurca
Various Species	North America 1938-1953	5,148 Mallards captured 39,610 harvested	10% gizzards contained lead shot 25% ingested lead annually 4% mortality in Mississippi Flyway annually 2-3% mortality for U.S. annually	Bellrose 1959
	North America 1930-1964	1,873,970 various studies	4% of waterfowl succumbing to disease died of lead poisoning	Sout and Cornwell 1976
	United States 1973-1984 Maine	171,697 harvested 1.246	5% gizzards contained shot 40% ingest shot annually 4% gizzards contained lead shot	Sanderson and Bellrose 1986 Longcore et al. 1982
	1976-1980 Illinois 1972	harvested ±1,500 die-off	75% gizzards contained lead shot and equally high toxic liver levels	Anderson 1975
	Louisiana 1980-1981	1,038 die-off	74% gizzards contained lead shot and equally high toxic liver levels	Zwank et al. 1985
	Iowa 1985-1986	449 captured	53% Canvasbacks exposed 39% Lesser Scaups exposed 31% Ring-necked Ducks exposed	Havera et al. 1992
Mallards	Illinois 1979	3,389 harvested	8% gizzards contained shot	Anderson and Havera 1985
Black Ducks	Nova Scotia 1987-1988	117 harvested	6% gizzards contained lead shot	Schwab and Daury 1989
Canvasbacks	Louisiana 1991-1994	172 captured	50% lead exposed 16% mortalities caused by lead toxicosis (and may have contributed to predation)	Hohman et al. 1995
Ruddy Ducks	Pennsylvania 1973-1977	1,213 collected (oil spill)	1% gizzards contained lead shot	Perry and Artmann 1979
Canada Geese	Colorado 1974	1,522 die-off	65% gizzards contained lead shot	Szymczak and Adrian 1978
	Illinois 1977	3,500 die-off	Unknown	Esslinger and Klimstra 1983
Trumpeter Swans	North America 1976-1992	231 various mortality studies	42% died of lead poisoning	Blus 1994
Tundra Swans	North America 1942-1990	303 various mortality studies	73% died of lead poisoning	Blus 1994

Species	Location	Ν	Exposure rates	Source
American Woodcock	Eastern Canada 1995-1996	1,588 harvested	40% exposed (bone)	Scheuhammer et al. 1999
Bobwhite Quail	Illinois 1966	1 dying	4 lead shot in gizzard	Westemeier 1966
	New Mexico 1985-1987	111 collected	15% exposed 6% sublethal poisoning (liver)	Best et al. 1992b
Scaled Quail	New Mexico 1950	1 dead	13 lead shot in gizzard	Campbell 1950
	New Mexico 1985-1987	226 harvested	7% exposed 4% sublethal poisoning (liver)	Best et al. 1992b
Ring-necked Pheasant	California 1965	1 dead	29 lead shot in gizzard	Hunter and Rosen 1965
Mourning Dove	Maryland Early 1960's	62 collected	16% gizzards contained lead shot	Locke and Bagley 1967
	Tennessee 1967	1,949 harvested	1% gizzards contained lead shot	Lewis and Legler 1968
	New Mexico 1985-1987	420 collected	8% exposed 4% sublethal poisoning (liver)	Best et al. 1992a
Sora Rail	Maryland 1965-1974	767 harvested	12% gizzards contained lead shot	Artmann and Martin 1975
	Missouri 1966-1967	167 harvested	2% gizzards contained lead shot	
	Maryland 1976	229 collected	7% gizzards contained lead shot	Stendell et al. 1980
Mississippi Sandhill Crane	Mississippi 1992	1 dead	1 lead object liver lead level 70 ppm	Franson and Hereford 1994
Wild Turkey	New York 1972	1 dead	4 lead shot in gizzard	Stone and Butkas 1972

Table 3: Examples of lead exposure and primary lead poisoning in game birds due to hunting and fishing

Table 4: Tests for lead exposure in wildlife

Test	Lead Exposure level	Source					
	Source						
Indications of recent lead exposure							
Blood lead levels Measures recent lead exposure in live or dead birds However blood lead	<.20 ppm <u>Background</u> .2059 ppm <u>Exposed</u> —indicative of recent, acute exposure with no symptoms but may be more vulnerable to accidental injury	Redig 1984, 1985, Havera et al. 1989					
drops dramatically within 24 hours of death.	.60-1.0 ppm <u>Clinical lead toxicity</u> —chronic exposure resulting in some symptoms, possibly mild depression and anemia, require chelation therapy						
	requiring immediate and effective therapy						
Protoporphyrin (PP) levels	Species-dependent ranges	Hoffman et al. 1981,					
in the blood Increases in PP due to ingestion of even a single lead pellet inhibits delta- aminolevulinic acid dehydratase (ALAD) enzyme activity in blood. Thus test indicates ALAD activity levels.		Anderson and Havera 1985, Scheuhammer 1989					
Liver lead levels measures recent lead exposure at necropsy.	Species-dependent ranges	Scanlon et al. 1980, Buerger et al. 1986, Franson 1996, Wayland et al. 1999, Vyas et al. 2000					
Kidney lead levels measures recent lead exposure at necropsy.	Species-dependent ranges	Pattee et al. 1981					
Gizzard Visual inspection determines number of pellets present.	Researchers visually inspect gizzard contents for shot. To differentiate, apply a magnate to which steel shot is attracted. This approach detects 75-80% of pellets in gizzard.	Montablano and Hines 1978, Anderson and Havera 1985					
Gizzard Radiology/ Flouroscopy determines number of pellets present.	Researchers x-ray or fluoroscope gizzards (or gizzard contents) to detect the presence of shot. This approach detects 72% of pellets in gizzard.	Anderson and Havera 1985, Montablano and Hines 1978					
Gizzard Inspection/Radiology/ Flouroscopy determines number of pellets present.	Researchers combine methods in an attempt to detect all pellets. This approach detects 92-100% of pellets.	Montalbano and Hines 1978					

	Indications of lead	exposure over the lifetime	
Bone analysis	Species-dependent r	anges	Scheuhammer 1987,
used to measure lifelong			Elliott et al. 1992,
lead exposure. Because lead			Wayland et al. 1999
uptake in bones occurs			
within a few hours, bone can			
be appropriate for recent			
exposure too. This body			
burden measure is especially			
useful for harvest studies			
and when carcasses are			
scavenged or decomposed.			
Feather analysis			Scheuhammer 1987
used to measure external			
contamination rather than			
dietary exposure.			

Table 5: Examples of lead exposure and lead poisoning in raptors due to hunting and fishing

			_	
Species	Location	N	Exposure rates	Source
Bald Eagles	United States 1960-1965	45 collected	7% died of lead poisoning	Coon et al. 1969
	United States	168	5% died of lead poisoning	Kaiser et al. 1980
	1975-1977	collected		
	United States	4,300+	8% died of lead poisoning	Franson et al. 2002
	1960-2000	collected		
	Northwest U.S.	120	23% exposed	Wiemeyer et al. 1989
	1979-1981	captured	-	
	California &	17	41% exposed	Frenzel and Anthony
	Oregon 1979-1982	captured		1989
		10	90% sublethal poisoning	
		dead	10% acute lead poisoning	
	Western U.S.	252	56% detected	Harmata 1993
	1985-1992	captured	Fall and winter detection levels 89-100%	
	Idaho	6	83% acute poisoning (liver)	Craig et al. 1990
	1977-1986	dying or dead		
	Montana	unknown	80% exposed	Harmata 1990
	1982-1984	captured	-	
	Montana	37	73% exposed	Harmata and Restani
	1985-1992	captured	8% clinical lead toxicity	1995
			5% acute lead poisoning	
	Montana	81	16% exposed	Miller et al. 1998
	1990-1994	captured	2% clinical lead toxicity	
			3% acute lead poisoning	
	Minnesota	25	48% exposed	Hennes 1985
	Early 1980's	captured	16% clinical lead toxicity	
			32% acute lead poisoning	
	West Coast	27	23% sublethal poisoning	Elliott et al. 1992
	Canada	injured,	14% acute poisoning (liver)	
	1988-1991	dying, or		
		dead		
	Canadian Prairies	96	2% sublethal poisoning	Wayland and
	1990-1996	dead	12% acute poisoning (liver)	Bollinger 1999
	Canadian Prairies	66	9% digestive tracts contained lead shot	Miller et al. 2000
	1992-1995	captured		
	Saskatchewan	103	8% exposed	Miller et al. 2001
	1992-1995	captured		

Golden Eagles	Western U.S.	84	80% detected	Harmata 1993
8	1985-1992	captured		
	Idaho	16	13% sublethal poisoning	Craig et al. 1990
	1977-1984	dying or	44% acute poisoning (liver)	
		dead		
	Idaho	178	42% exposed	Craig et al. 1994
	1989-1994	captured		
	Montana	13	44% exposed	Harmata 1990
	1982-1984	captured		
	Montana	86	43% exposed	Harmata and Restani
	1985-1992	captured	11% clinical lead toxicity	1995
			2% acute lead poisoning	
	California	162	30% exposed	Pattee et al. 1990
	1985-1986	captured	3% clinical lead toxicity	
			3% acute lead poisoning	
	Canadian Prairies	31	10% sublethal poisoning	Wayland and
	1990-1996	dead	13% acute poisoning (liver)	Bollinger
Rold & Coldon	Midwestern US	654	12% exposed	Kramer and Redig
Eagles	1980-1995	dead	3% clinical lead toxicity	1997
Lagies	1900 1995	deud	6% acute lead poisoning	1777
California	California	5 dead	60% died of lead poisoning	Weimever et al. 1988
Condor	1980-1986			
		14	36% clinical lead toxicity	
		captured		
	California	5	1 died of lead poisoning	Risebrough et al.
	2001	captured	4 others recovered from acute lead	2001
			poisoning with chelation therapy	
	Arizona	17	4 died of lead poisoning	California Condor
	2000		13 others recovered from acute lead	Recover Team 2001
-			poisoning with chelation therapy	
Red-tailed	Unites States	163	1% diagnosed as lead poisoned	Franson et al. 1996
Hawks	1975-1992	collected	2% died of emaciation which may have	
			been caused by lead poisoning (not tested	
			for presence of toxins)	

Sonsitivo Snocios	Common Loon Trumpeter Swan Bald Fagle
Sensitive Species	Ministration Loon, Trumpeter Swan, Data Lagre,
	Mississippi Sandhill Crane
Waterfowl	Canada Goose, Mallard, American Black Duck,
	Ring-necked Duck, Redhead, Wood Duck, Greater Scaup,
	Common Merganser, Red-breasted Merganser,
	White-winged Scoter
Wading Birds	Sandhill Crane, Great Blue Heron, Common Egret, Snowy Egret, White
	Ibis, King Rail, Clapper Rail
Gulls	Herring Gull, Laughing Gull, Royal Tern
Pelicans	Brown Pelican, American While Pelican,
	Double-crested Cormorant
Sources: USFWS 199	4, Schuehammer and Norris 1995, Smrchek 1996.

Table 6: Avian species poisoned by lead fishing tackle

Table 7: Examples of wildlife lead exposure at trap, skeet, and shooting ranges

Location	Species	Ν	Lead exposure	Source
Tidal meadow	Northern	40	100% experienced acute	Roscoe et al. 1989
adjacent to trap and	Pintails	collected	lead poisoning.	
skeet range, New			33% dead of lead poisoning	
Jersey			upon submission.	
			Average number of lead shot	
			in gizzard was 38 pellets.	
Patuxent Research	Song birds	20	85% experienced acute lead	Vyas et al. 2000
Refuge Trap and		captive	poisoning.	
Skeet Range,				
Maryland				
Federal Law	Various	72	33% exposed	Lewis et al. 2001
Enforcement	avian and	collected	17% subclinical toxicity	
Training Center,	mammal			
Georgia	species	10	Animals found dead	
	1	found	diagnosed as lead poisoned.	
		dead		

United States				
Migratory Bird Treaty Act	Provides Secretary of Interior authority to regulate how			
	migratory birds are hunted.			
Endangered Species Act	Secretary of Interior must act to ensure survival of threatened			
	or endangered species.			
Bald and Golden	Secretary of Interior must act to ensure survival of Bald and			
Eagle Act	Golden Eagles.			
National Wildlife Refuge	Conservation of wildlife is top priority at refuges, therefore			
System Administration Act	hunting is permitted only if it is compatible with sound wildlife management practices			
	wildlife management practices.			
National Park Service Act	Ensures protection of scenery and wildlife within National			
	Parks for future generations.			
Clean Water Act	Prohibits "point source" discharging pollutants in waterways			
	of the U.S.			
Resource Conservation and	A substance is defined as hazardous waste due to its toxic			
Recovery Act	environmental impacts and is subject to regulation and			
	remediation.			
Toxic Substances	Toxins subject to regulation if they pose environmental risks			
Control Act	that outweigh the burden of potential regulations.			
Federal Regulation	United States Fish and Wildlife Service prohibits using lead			
50 CFR 30	shot for taking waterfowl, coots, and certain other species			
	Deginning in 1991-1992 nunting season.			
	Establishes U.S., Puelto Rico, and Virgin Islands as nontoxic			
	Zones for numbing waterfown. Revises procedures for approving poptovic shot materials			
	(must contain $<1\%$ lead) to ensure that spent shot does not			
	impose a significant danger to migratory hirds			
	Approves hismuth-tin tungsten-iron tungsten-polymer and			
	tungsten-matrix shot.			
Federal Regulation	National Wildlife Refuge System prohibits use or possession			
50 CFR 32	of toxic shotgun pellets for upland game hunting on Waterfowl			
	Production Areas and other areas beginning in 1996-1997.			
	Establishes "Lead-Free Fishing Areas" thereby prohibiting use			
	of some lead sinkers and jigs on National Wildlife Refuges and			
	National Parks inhabited by loons (i.e. AK, MI, MN, ME, MT,			
	WI, FL, WY).			
State Regulations	Some nontoxic upland game hunting and/or fishing zones			
AR, CA, DE, FL, IA, IL, IN,	established. In particular, Maine, New Hampshire, and New			
KS, KY, LA, ME, MI,	York have banned the use and/or sale of high-risk sinkers and			
MO, NC, NE, NH, NM, OH,	Jigs $(1/2 - 1 \text{ ounce})$.			
OK, OR, SD, TN, UT, WA,				
WY				

 Table 8: Current regulations relevant to lead and nontoxics for hunting, shooting, and fishing

	Canada		
Environment Canada,	Guidelines regarding toxicity tests required for the approval of		
Guidelines for Nontoxic Shot	toxic Shot candidate non-toxic shot.		
Approval			
Migratory Birds Convention	In 1996, non-toxic shot required for all hunting within		
Act	National Wildlife Areas.		
	In 1997, non-toxic shot required for all migratory game birds		
	(except Woodcock, Band-tailed Pigeon, Mourning Dove) in		
	wetlands.		
	In 1999, non-toxic shot required on a national level for		
	migratory birds (with the exceptions listed above).		
Canadian Wildlife Act &	These Acts are designed to safeguard wildlife. Under their		
National Parks Act	authority, lead fishing sinkers and jigs weighing less than 50		
	grams banned in National Wildlife Areas and National Parks in		
	1997.		

			Those gizzards with shot (by type)		
Species	Location	Ν	Lead	Nontoxic	Source
	Limited bar	<u>is on lead sh</u>	ot for waterfowl hun	ting in place	•
Various	U.S.	2,734	73%	27%	White and
Waterfowl	1974-1975	harvested			Stendell 1977
	Mississippi	74,365	Mallards		Anderson et al.
	Flyway	harvested	78%	22%	1987
	1977-1979		10 other species com	bined	
			83%	17%	
	Midwest	1,246	87%	13%	Trost 1979
	1977	harvested			
Canada Geese	Eastern Prairies	53	44%	66%	DeStefano et al.
	1986-1988	harvested			1995
	1991 federal	oan on lead s	shot for waterfowl hu	nting in place	
Various	Mississippi	16,651	Mallards		Anderson et al.
Waterfowl	Flyway	harvested	32%	68%	2000
	1996-1997		Canvasbacks		
			29%	71%	
			Lesser Scaups		
			56%	44%	
			Ring-necked ducks		
			55%	46%	
Trumpeter	Washington	300	Die-off caused by lead shot ingestion		Washington
Swans	2000-2001	collected		-	Department of
					Fish and Wildlife
					Nontoxic Shot
					Working Group
					2001

Table 9 Comparisons of shot ingestion rates in waterfowl since 1991 ban on lead shot in waterfowl hunting

Material	Brand	Gauges	Sizes	Game species
Steel	Cabela's Xtreme Steel	12	T, BBB, BB, 2, 4	Ducks, geese
		10.10	1.2.2.4.(D 1
	Estate Steel Game and Target Loads	10, 12, 20	1, 2, 3, 4, 6	Ducks, geese,
	Estate High Velocity Magnum Steel Loads	20	4, 6, 7	Ducks, upland
				game
	Kent Cartridge Company Fasteel	12	BB, 1, 2, 3, 4	Ducks, geese
	Federal Classic High Velocity Steel	10, 12, 16, 20	T, BBB, BB, 1, 2, 3, 4	Ducks, geese
	Federal Premium Steel Magnum	12	T, BBB, BB, 2, 4	Ducks, geese
	Federal Duck and Pheaseant Steel	12	BB, 2, 4	Ducks, geese, pheasant
	Fiocchi USA Steel Shotshells	12, 20	T, BBB, BB, 1, 2, 3, 4, 6, 7	Ducks, geese, upland game, turkey
	Remington NitroSteel High Velocity Steel	10, 12, 20	T, BBB, BB, 1, 2, 3, 4	Ducks, geese
	Remington Sportsman Steel		BB, 2, 4, 6, 7	Ducks, geese, upland game
	Remington Express Steel Extra Long Range	12, 16, 20	BB, 1, 2, 3, 4, 6	Ducks, geese, upland game
	Remington Steel Game Loads	12, 20	7	Doves, quail
	Winchester Super-X Drylock Steel	10 12, 20	T, BBB, BB, 1, 2, 3 4 6	Ducks, geese,
	Winchester Supreme Xpert Steel	12, 20	BB, 2, 4, 6, 7	Ducks, geese,
Bismuth	Bismuth Cartridge Company No-Tox	10, 12,	BB, 2, 4, 5, 6	Ducks, geese,
		16, 20,		upland game,
	Else Harde I to Jun ou Dismuth	28, 410	DD 2 4 5 6 7	turkey
	Eley Hawk Ltd. Impax Bismuth	10, 12, 16, 20	BB, 3, 4, 5, 6, 7	Ducks, geese,
		28, 410		upland game
Tungsten- Iron	Federal Premium Tungsten Iron Loads	10, 12, 20	BBB, BB, 2, 4	Ducks, beese
Tungsten- Iron-Steel	Federal Premium Tungsten Iron Steel Loads	10, 12	2, 4	Ducks
Tungsten Polymer	Federal Premium Tungsten Polymer	10, 12, 20	4, 6	Ducks, upland game
Tungsten- Nickel-Iron	Hevi-Shot	12, 20	2, 4, 6, 7.5, 9	Ducks, geese, upland game, turkey
Tungsten Matrix	Kent Cartridge Company Impact	12, 16, 20	1, 3, 5, 6	Ducks, upland game

_

Table 10: Available Nontoxic Ammunition

Material	Product	Toxicity	Number of Shells	Cost
Lead	Cabela's Xtreme Lead	Toxic	25	\$9
	Golden Pheasant Lead	Toxic	25	\$11
Steel	Federal Duck and Pheasant Steel	Nontoxic	25	\$8
	Winchester Super-X Steel	Nontoxic	25	\$12.50
	Fasteel	Nontoxic	25	\$15
	Cabela's Xtreme Steel	Nontoxic	25	\$18
Nontoxic Alloys	Federal Premium Tungsten-Iron-Steel	Nontoxic	10	\$12
	Bismuth No-Tox	Nontoxic	10	\$15
	Impact Tungsten Matrix	Nontoxic	10	\$16
	Hevi-Shot Tung-Nickel	Nontoxic	10	\$16

Table 11: Price comparison on a sample of pheasant loads (≅1 ¼ oz. 2 ¾" Size 4 shells)*

*Prices drawn from Cabela's (<u>www.cabelas.com</u>), April 2002. Although prices may vary by retailer, the percent differences between shot types remain fairly constant.

Table 12:	Price comparison	on a sample of sinkers	and weights*

Products	Toxicity	Number	Cost
BassPro Lead Split Shot	Toxic	210	\$5.00
Cabela's Lead Shot	Toxic	± 100	\$3.00
BassPro Tin Split Shot	Nontoxic	210	\$5.50
Cabela's Nontoxic Shot	Nontoxic	± 100	\$4.25
Dinsmore Tin Shot	Nontoxic	±100	\$5.00
XPS Diamond Drop Weights (lead)	Toxic	10	\$3.00
XPS Tungsten Drop Weights	Nontoxic	6	\$5.00
Loon Outdoors Deep Soft Weight (tungsten putty)	Nontoxic	1 oz.	\$6.00

* Prices drawn from BassPro Shops (<u>www.bassproshops.com</u>) and Cabela's (<u>www.cabelas.com</u>), April 2002. Although prices may vary by retailer, the percent differences between sinker types remain fairly constant.