# FALL 2005 RAPTOR MIGRATION STUDIES AT CHELAN RIDGE, WASHINGTON



HawkWatch International, Inc. Salt Lake City, Utah





Okanogan and Wenatchee National Forests Winthrop, Washington

March 2006

# FALL 2005 RAPTOR MIGRATION STUDIES AT CHELAN RIDGE, WASHINGTON

Report prepared by: Jeff P. Smith and Mike C. Neal

Counts by:

Angela Sjollema, Steve Seibel, and James Waddell Assisted by Richard Hendrick and Dan Russell

Banding by:

Ben Vang-Johnson, Christy Hand, and Aran Meyer Assisted by Jim Watson, Devon Batley, and other staff and volunteers

On-site Education by:

Devon Batley Assisted by Tannis Thorlakson

Project Cooperators:

HawkWatch International, Inc. Principal Investigator: Dr. Jeff P. Smith 1800 South West Temple, Suite 226, Salt Lake City, UT 84115 (801) 484-6808

Okanogan and Wenatchee National Forests, Methow Valley Ranger District Principal Investigator: Kent Woodruff 24 Chewuch Road, Winthrop, WA 98862 (509) 996-4002

March 2006

| TABLE OF ( | CONTENTS |
|------------|----------|
|------------|----------|

| List of Tables                                                                                                                                                                                           | iii      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| List of Figures                                                                                                                                                                                          | iii      |
| Introduction                                                                                                                                                                                             | 1        |
| Study Site                                                                                                                                                                                               | 1        |
| Methods                                                                                                                                                                                                  | 2        |
| Standardized Counts                                                                                                                                                                                      | 2        |
| Trapping and Banding                                                                                                                                                                                     | 3        |
| Results and Discussion                                                                                                                                                                                   | 3        |
| Weather                                                                                                                                                                                                  |          |
| Observation Effort                                                                                                                                                                                       | 4        |
| Flight Summary and Trends                                                                                                                                                                                | 4        |
| Population Trends                                                                                                                                                                                        | 4        |
| Age Ratios as Indicators of Regional Productivity                                                                                                                                                        | 6        |
| Seasonal Timing                                                                                                                                                                                          | 6        |
| Resident Raptors                                                                                                                                                                                         | 6        |
| Trapping Effort                                                                                                                                                                                          | 6        |
| Trapping and Banding Results                                                                                                                                                                             | 7        |
| Encounters with Previously Banded Birds                                                                                                                                                                  | 7        |
| Identifying Migrant Origins through Stable Isotope Analyses                                                                                                                                              | 8        |
| Visitor Participation and Public Outreach                                                                                                                                                                |          |
| Acknowledgements                                                                                                                                                                                         |          |
| Literature Cited                                                                                                                                                                                         | 9        |
| Tables                                                                                                                                                                                                   |          |
| Figures                                                                                                                                                                                                  | 17       |
| Appendix A. History of official observer participation in the Chelan Ridge Raptor Migratio                                                                                                               | n        |
| Project                                                                                                                                                                                                  |          |
| Appendix B. Common and scientific names, species codes, and regularly applied age, sex, a color-morph classifications for all diurnal raptor species observed during fall migration at Chelan Ridge, WA. | and      |
| Appendix C. Daily observation effort, visitor disturbance ratings, weather records, and fligh summaries for the Chelan Ridge Raptor Migration Project: 2005                                              | nt<br>27 |
| Appendix D. Daily observation effort and fall raptor migration counts by species at Chelan<br>Ridge, WA: 2005                                                                                            |          |
| Appendix E. Annual observation effort and fall raptor migration counts by species at Chela<br>Ridge, WA: 1997–2005                                                                                       | n<br>31  |
| Appendix F. Daily capture totals of migrating raptors at Chelan Ridge, WA: 2005                                                                                                                          |          |
| Appendix G. Annual trapping effort and capture totals by species for migrating raptors at Chelan Ridge, WA: 1999–2005.                                                                                   |          |

# LIST OF TABLES

| Table 1. | Fall counts and adjusted passage rates (truncated to standardized annual sampling periods and adjusted for incompletely identified birds) by species for migrating raptors at Chelan Ridge, WA: 1998–2004 versus 2005.                      | 10 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2. | Fall counts by age class and immature : adult ratios for selected species of migrating raptors at Chelan Ridge, WA: 1998–2004 versus 2005.                                                                                                  | 11 |
| Table 3. | First and last observed, bulk-passage, and median-passage dates by species for migrating raptors at Chelan Ridge, WA in 2005, with a comparison of 2005 and 1998–2004 average median passage dates.                                         | 12 |
| Table 4. | Median passage dates by age for selected species of migrating raptors at Chelan Ridge, WA: 1998–2004 versus 2005                                                                                                                            | 13 |
| Table 5. | Fall capture totals, rates, and successes by species for migrating raptors at Chelan Ridge, WA: 1999–2004 versus 2005                                                                                                                       | 14 |
| Table 6. | Fall capture totals by sex and age (HY = hatching year; AHY = after hatching year), female : male capture ratios, and immature : adult capture ratios for selected species of migrating raptors at Chelan Ridge, WA: 2001–2004 versus 2005. | 15 |
| Table 7. | Foreign encounters of raptors banded at the Chelan Ridge Raptor Migration Project: 2000–2005.                                                                                                                                               | 16 |

# LIST OF FIGURES

| Figure 1. | Location of the Chelan Ridge Raptor Migration Project count and banding sites in north-central Washington.                                                                                                            | 17 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2. | Fall raptor migration flight composition by major species groups at Chelan Ridge, WA: 1998–2004 versus 2005.                                                                                                          | 18 |
| Figure 3. | Adjusted fall-migration passage rates at Chelan Ridge, WA for Turkey Vultures,<br>Ospreys, and Northern Harriers: 1998–2005. Dashed lines indicate significant<br>linear or quadratic regressions.                    | 19 |
| Figure 4. | Adjusted fall-migration passage rates at Chelan Ridge, WA for Sharp-shinned<br>Hawks, Cooper's Hawks, and Northern Goshawks: 1998–2005. Dashed lines<br>indicate significant linear or quadratic regressions.         | 20 |
| Figure 5. | Adjusted fall-migration passage rates at Chelan Ridge, WA for Broad-winged,<br>Swainson's, Red-tailed, and Rough-legged Hawks: 1998–2005. Dashed lines<br>indicate significant linear or quadratic regressions.       | 21 |
| Figure 6. | Adjusted fall-migration passage rates at Chelan Ridge, WA for Golden and Bald Eagles: 1998–2005. Dashed lines indicate significant linear or quadratic regressions.                                                   | 22 |
| Figure 7. | Adjusted fall-migration passage rates at Chelan Ridge, WA for American Kestrels,<br>Merlins, Prairie Falcons, and Peregrine Falcons: 1998–2005. Dashed lines indicate<br>significant linear or quadratic regressions. | 23 |
| Figure 8. | Combined-species passage volume by five-day periods for migrating raptors at Chelan Ridge, WA: 1998–2004 versus 2005.                                                                                                 | 24 |

#### **INTRODUCTION**

The Chelan Ridge Raptor Migration Project in north-central Washington is an ongoing effort to monitor long-term trends in populations of raptors using this north Cascades migratory flyway. HawkWatch International (HWI), in partnership with the Okanogan and Wenatchee National Forests (OWNF), initiated standardized counts of the autumn raptor migration through this region in 1997, with full-season counts commencing in 1998. In cooperation with HWI and OWNF, the Falcon Research Group (FRG) initiated a trapping and banding program at the site in 1999 and 2000. HWI took over coordinating the banding program in 2001. To date, HWI observers have recorded 18 species of migratory diurnal raptors at the site, with counts ranging between ~1,500–2,900 migrants per season. The 2005 season marked the 8<sup>th</sup> consecutive, full-season count and the 7<sup>th</sup> consecutive season of banding at the site. This report summarizes the 2005 count and banding results.

The Chelan project was 1 of 13 long-term, annual migration counts and 1 of 5 migration-banding studies conducted or co-sponsored by HWI in North America during 2005. The primary objective of these efforts is to track long-term population trends of diurnal raptors in western North America and around the Gulf Coast region (Inzunza et al. 2000, Smith and Hoffman 2000, Smith et al. 2001, Hoffman et al. 2002, Hoffman and Smith 2003). Raptors serve as important biological indicators of ecosystem health (Bildstein 2001) and long-term migration counts are one of the most cost effective and efficient methods for monitoring the regional status and trends of multiple raptor species (Zalles and Bildstein 2000).

The intensive counting and banding operations, along with related research activities such as satellite tracking of migrants, also provide valuable information about breeding and wintering distributions, migratory routes and timing, migratory behavior, population demographics, mortality factors and longevity, morphometric variation, molt timing and sequences, and health assessments (Hoffman et al. 2002). This information helps us understand the life histories, ecology, status, and conservation needs of raptor populations in North America. In addition, these migration studies offer unique opportunities for the public to learn about raptors and the natural environment, and providing such opportunities is another important component of the missions of HWI and OWNF. Accordingly, besides ensuring efficient local coordination of the overall project, OWNF personnel and volunteers, working in tandem with the seasonal observers, banders, and on-site educator, play a critical role in coordinating educational opportunities at the site.

#### **STUDY SITE**

Chelan Ridge is located approximately 21 km north–northwest of the village of Chelan on the Chelan County / Okanogan County and Okanogan National Forest / Wenatchee National Forest borders (48°01'12.8"N, 120°05'38.4"W; Figure 1). The study site is accessed by following Washington State Road 153 about 11 km northwest of Pateros, then Black Canyon Road (USFS Road 4010) west–southwest until it ends, then Cooper Mountain Road (USFS Road 8020) southeast for another 5.4 km.

The Chelan Ridge count site sits at an elevation of 1,729 m and provides a 360° view of the surrounding landscape. The view to the south extends across Lake Chelan and into the Wenatchee National Forest. The view to the west follows the ridgeline (known as Cooper Ridge) and extends into the Sawtooth Wilderness. The view to the north extends across the Methow Valley and into the Pasayten Wilderness. The view to the east extends across the Columbia River and the Waterville Plateau. The lookout's southwestern slope is a cliff face with a 70–80° slope that drops about 65 m into the Mitchell Creek Basin. This cliff face creates excellent updrafts on days of moderate to strong south winds. On such days, migrants using the updrafts fly extremely close to the observation point. There are also unobstructed views of the regions to the south (the basin) and west where thermals frequently form.

Mitchell Creek Basin fills the east-west view and is a common place to spot raptors. This basin is approximately 3.5 km wide, with Goff Peak the major landmark on the southern side of the basin. In 1970, a major forest fire cleared Mitchell Creek Basin and today it is filled with snags, lots of exposed rocks, and young, regenerating vegetation consisting mainly of Scouler willow (*Salix scouleri*), big basin sagebrush (*Artemisia tridentata*), and some lodgepole pine (*Pinus contorta*). Many migrants enter Mitchell Creek Basin through a gap in the ridge between the observation point and a similar high point further up the ridge. Looking north into Black Canyon, it is difficult to spot migrants against the dark-green backdrop lodgepole and Ponderosa pine (*Pinus ponderosa*) forest. Although the view of the northern horizon is unobstructed, one cannot see all of Black Canyon from the lookout. To the southeast, migrant raptors often fly through another gap between the lookout and Cooper Mountain. Some migrants pass the lookout undetected but are later seen rising above the horizon on thermals near Cooper Mountain.

Two trapping and banding stations were located approximately 1 and 2.25 km southeast of the count site (Figure 1). The North station was located on the northwest flank of Cooper Mountain in the same area used by the FRG crew in 1999 and by HWI since 2001. The South station was located in a saddle on the southwest flanks of Cooper Mountain in an area used regularly since 2001.

Because the stations were located sufficiently "downstream" of the count site, the trapping operations did not affect the behavior of migrants in ways that might have produced a biased count.

# **METHODS**

#### **STANDARDIZED COUNTS**

Two official or designated observers, relieved or supplemented by the on-site educator and other trained staff and volunteers, conducted standardized daily counts of migrating raptors from a single traditional observation site. This was official, full-season observer Angela Sjollema's first season of migration counting (see Appendix A for a complete history of observer participation). Official observer James Waddell, also with no prior seasons of migration counting experience, received pre-season training and worked during the first month of the season. Former HWI observer Steve Siebel, with four at least partial seasons of prior migration counting experience, then took over for the rest of the season. Long-time project affiliates and former full-time Chelan observers Richard Hendrick and Dan Russell ably assisted them on a regular basis. Other USFS and HWI staff and crewmembers, as well as visitors, also periodically assisted with the counts.

Weather permitting, observations usually began between 0700 and 0800 hrs and ended between 1500 and 1600 hrs Pacific Standard Time (PST). Data gathering and recording followed standardized protocols used at all HWI migration sites (Hoffman and Smith 2003). The observers routinely recorded the following data:

- 1. Species, age, sex, and color morph of each migrant raptor, whenever possible and applicable (Appendix B lists common and scientific names for all species, information about the applicability of age, sex, and color morph distinctions, and two-letter codes used to identify species in some tables and figures).
- 2. Hour of passage for each migrant; e.g., the 1000–1059 hrs PST.
- 3. Wind speed and direction, air temperature, percent cloud cover, predominant cloud type(s), presence or of precipitation, visibility, and an assessment of thermal-lift conditions, recorded for each hour of observation on the half hour.
- 4. Predominant direction, altitude, and distance from the lookout of the flight during each hour.

- 5. Total minutes observed and the mean number of observers present during each hour (included designated observers plus volunteers/visitors who actively contributed to the count [active scanning, pointing out birds, recording data, etc.] for more than 10 minutes in a given hour), recorded on the hour.
- 6. A subjective visitor-disturbance rating for each hour, recorded on the hour.
- 7. Daily start and end times for each official observer.

Calculation of "adjusted" (to standardize sampling periods and adjust for incompletely identified birds) passage rates (migrants counted per 100 hours of observation) and analysis of trends follows Hoffman and Smith (2003). In comparing 2005 annual statistics against means and 95% confidence intervals for previous seasons, we equate significance with a 2005 value falling outside the bounds of the confidence interval for the associated mean.

#### **TRAPPING AND BANDING**

Weather permitting the trappers operated the two traditional banding stations daily from late August through mid-October, generally between 0900–1700 hrs PST. Capture devices included mist nets, dhogaza nets, and remotely triggered bow nets. Trappers lured migrating raptors into the capture stations from camouflaged blinds using live, non-native avian lures attached to lines manipulated from the blinds. Unless already banded, all captured birds were fitted with a uniquely numbered USGS Biological Resources Division aluminum leg band. Data gathering and recording followed standardized protocols used at all HWI migration-banding sites (Hoffman et al. 2002). All birds were released within 45 minutes, usually much quicker.

# **RESULTS AND DISCUSSION**

# WEATHER

The project was shut down on 25 October, two days earlier than hoped for, for logistical reasons related to expectations of heavy snowfall (see Appendix C for daily weather records). Inclement weather entirely precluded only one other day of observation during the 2005 season, which is fewer than the 1998–2004 average of 3 days; however, three others were reduced to  $\leq$ 4 hours of observation, which is slightly higher than average (2 days). Moreover, the season saw a record-high 13% of the active observation days with predominantly mostly cloudy to overcast skies and some rain or snow (average 6%), the overall proportion of active observation days during which some rain or snow occurred was above average (20 vs. 12%), and days when fair skies predominated were less frequent than usual (39 vs. 50%). Unlike in 2002 and 2003, especially, when the prevalence of visibility reducing fog and especially haze (mostly from wildfire smoke) was well above average, the proportion of such days in 2005 was well below average (12 vs. 39%). Moreover, the average east and west visibility ratings were record highs (86 km E, 78 km W vs. 1998–2004 averages of 47 km)

In 2005, light winds (<12 kph) prevailed on 55% of the active observation days, moderate winds on 44%, and strong winds ( $\geq$ 29 kph) on 2% of the days (1998–2004 averages: 70%, 28%, and 2%). In terms of wind directions, 2005 was similar to 2004 in that steady S–SW winds prevailed more often than usual (61% of the active days). Such winds are usually the most common, but before 2004 (75%), the range of prevalence varied from 21–53%. Patterns such as variable NW–NE, N–E, and SW–SE were correspondingly more common then, especially from 1999–2003.

The temperature during active observation periods averaged 15.2°C (the average of daily values, which in turn were averages of hourly readings), ranging from 5.0–31.1°C. The overall range is the highest yet

recorded and the average nearly matches the record high (15.3°C) posted in 2004. In 2005, thermal-lift ratings nearly matched the 1998–2004 averages of 61% poor-to-fair and 39% good-to-excellent.

In summary, although inclement weather deterred our 2005 observers at an average level, the season featured much unsettled weather. Temperature readings extended a steady warming trend since 1999, but mostly cloudy to overcast skies and rainy/snowy weather also were more prevalent than usual. Smoke and haze were much less of a problem than in 2002 and 2003, dropping back to near pre-2002 levels. Wind speeds shifted slightly in favor of moderate as opposed to light winds compared to the average pattern, while much like last year, steady S–SW winds prevailed much more frequently than usual. The combination of warmer weather but stronger winds may have offset one another to result in thermal lift ratings that matched the long-term average.

# **OBSERVATION EFFORT**

Observations occurred on 62 of 65 possible days between the scheduled observation period of 24 August through 27 October. The number of observation days and hours (502.50) were a non-significant 4% and 5% higher than the 1998–2004 averages of  $59 \pm 95\%$  CI of 3.4 days and 477.15  $\pm$  35.84 hours. The 2005 average of 1.9 observers per hour (including official and guest observers; value is mean of daily values, which are in turn means of hourly values) matched the 1998–2004 average of 1.9  $\pm$  0.09 observers/hour.

# FLIGHT SUMMARY AND TRENDS

The observers counted 1,826 migrating raptors of 16 species during the 2005 season (Table 1; see Appendix D for daily count records), which is a non-significant 16% lower than the 1998–2004 average (see Appendix E for annual count summaries). The flight consisted of 57% accipiters, 16% buteos, 7% eagles, 7% falcons, 6% harriers, 3% vultures, 1% Ospreys, and 2% unknown or other raptors (Figure 2). The proportions of buteos and Ospreys were significantly below average, whereas the proportions of vultures and harriers were significantly above average. The most common species seen in 2005 were the Sharp-shinned Hawk (40% of the total count), Cooper's Hawk (13%), Red-tailed Hawk (13%), Golden Eagle (7%), and Northern Harrier (6%). All other species each comprised less than 5% of the total count.

The count of Turkey Vultures rose to a record high of 58 birds, whereas the Northern Goshawk count fell to a record low of 13 birds (Appendix E). Adjusted passage rates were significantly above average only for Turkey Vultures and Merlins in 2005, whereas passage rates were significantly below average for four species: Osprey, Northern Goshawk, Red-tailed Hawk, and Swainson's Hawk (Table 1).

# **Population Trends**

Eight years of full-season data is still too short a duration to attach much significance to documented trends; nevertheless, comparisons across species and with data from other longer-term monitoring projects in the West are instructive. Regression analyses of trends in adjusted passage rates between 1998 and 2005 indicated marginally ( $P \le 0.10$ ) to highly significant ( $P \le 0.10$ ) linear declining trends for Northern Harriers (Figure 3), Sharp-shinned Hawks (Figure 4), Broad-winged Hawks (Figure 5), and American Kestrels (Figure 7). In addition, following two years of increasing passage rates in 1999 and 2000, Ospreys have shown a steep declining pattern thereafter, which resulted in a marginally significant, hill-shaped quadratic trend (Figure 3). Marginally significant quadratic trends were also indicated for Cooper's Hawks and Merlins, but in these cases trough-shaped patterns tracking declines through 2003 followed by rebounds in the last two years (Figure 4). Though not resulting in a significant regression at this point due to a spike in activity in 2004, Northern Goshawks also have generally shown a declining trajectory since 1998 (Figure 4). Similarly, though the 1998 passage rate for Red-tailed Hawks was relatively low, passage rates for this species have shown a fairly steady decline since 1999 (Figure 5).

The only species that have shown distinct increasing trajectories since 1998 are Turkey Vultures, Golden Eagles (primarily adults), and Peregrine Falcons (Figures 3, 6, and 7), though regression analyses revealed significant patterns only for Turkey Vultures (P = 0.07) and adult Golden Eagles (P = 0.02).

Across HWI's network of western migration-monitoring sites, declining patterns have been common since widespread and prolonged drought began plaguing much of the interior West after 1998 (Hoffman and Smith 2003). In particular, overall counts have been very low for the past four years in the heart of the drought-stricken Great Basin at HWI's monitoring site in the Goshute Mountains of northeastern Nevada (Smith and Neal 2006a), and the count in the Grand Canyon of Arizona farther south along the same flyway plummeted to record lows in 2004 and again in 2005 (Smith and Neal 2006b). Several species have shown declining trends since 1999 at Chelan Ridge as well, but substantially lower overall counts kicked in a year later compared to the Goshute Mountains. Whether or not these are related patterns is unclear at present. Like the central Great Basin, the eastern Cascades region where Chelan Ridge lies has been hit hard by regional drought. A relatively high proportion of the migrants that pass through Chelan Ridge probably originate in areas that lie northwest of the primary drought region, however, whereas the Goshute Mountains normally draw from a much greater expanse of naturally xeric Great Basin habitat. The direct impact of the drought may have hit most guickly populations in the already xeric northern Great Basin and therefore affected the Goshute counts sooner. The drought has also become more severe in the northeastern Cascades in the last two years, whereas moisture levels finally rebounded in the northern Great Basin in 2004 and especially 2005.

We have now recorded three instances of migrants being caught at both Chelan Ridge and at HWI's Bonney Butte migration site farther south in the Cascades of northern Oregon, and several of HWI's satellite-tracked raptors have passed near both sites. Thus, we know that the two sites are connected for many migrants that move within the Pacific Coast Flyway and generally winter in California. In this light, it is particularly noteworthy that counts and passage rates at the two sites over the past several years have followed highly divergent patterns. Counts were high at Chelan but low at Bonney Butte in 2002 (see Smith and Neal 2006c), then counts jumped to record highs at Bonney Butte in 2003 and 2004 while counts dropped to record lows at Chelan, and finally the overall count rose again by 25% at Chelan in 2005 but dropped by 28% at Bonney Butte in 2005.

One possible explanation for these divergent patterns concerns regional flight-line shifts. After three years of severe drought, counts in the Goshute Mountains in the heart of the Great Basin plummeted in 2002 from ~20,000 to ~12,000 migrants per season (Smith and Neal 2006a), coincident with near-record high counts commencing at Bonney Butte in 2003 and 2004 at the same time that counts at Chelan Ridge remained at low levels. We suspected that a logical diversion path for migrants moving south through eastern Washington and northern Idaho to use to avoid the parched Great Basin would be to veer west through the Blue and Wallowa Mountains and over to the Cascades with Mt. Hood as a navigation target. This would result in those migrants intersecting the Cascades just north of Bonney Butte, and might explain the high counts at Bonney Butte despite low counts farther north in the Washington Cascades. Counts at Idaho Bird Observatory's site near Boise have also remained high in the last few years (G. Kaltenecker personal communication) while the counts dropped in the Goshutes several hundred kilometers farther south, again suggesting the possibility that some migrants have been diverting west out of Idaho before passing down through the heart of the Great Basin. Winter/spring moisture levels finally began to rebound in the northern Great Basin in 2004 and especially 2005, whereas drought conditions intensified during 2004 and remained fairly severe through early winter 2005 in the northern Cascades before conditions rebounded to above-average snowpack by spring 2006. It is therefore possible that the 2005 drop in the Bonney Butte count signaled a shift in activity back towards the Great Basin. However, although the count at Boise Ridge was well-above average again in 2005, no corresponding increase occurred at the Goshutes, so it appears we will need to await additional years of data to clarify our understanding of regional dynamics.

# Age Ratios as Indicators of Regional Productivity

Six of nine species for which comparisons of immature : adult ratios were possible showed lower than average ratios in 2005, with the differences significant for Northern Goshawks, Red-tailed Hawks, and Golden Eagles (Table 2). Age ratios for Peregrine Falcons and Bald Eagles were significantly above average, but low overall counts preclude attaching much significance to these comparisons. The Cooper's Hawk also showed a significantly above-average age ratio in 2005, with the count of immature birds well above average. This suggests that, although the overall count and passage rate for this species were only slightly above average, it was probably a relatively productive year for Cooper's Hawks in the northern Pacific Northwest in 2005. Conversely, for all species that showed below average age ratios in 2005, lower than average counts of young birds contributed, suggesting that for these species low productivity likely contributed to the continued average to below average counts for these species.

# **Seasonal Timing**

The combined-species median passage date of 18 September was a significant 6 days earlier than the 1998–2004 average (Table 3). Similar to 2003 and 2004, the seasonal distribution of activity in 2005 was atypical compared to previous years in showing a bimodal pattern, with proportionately higher than usual activity during the 16–20 September and 6–10 October five-day periods, but significantly below-average activity in between (Figure 8). The low mid-September activity corresponded to the only multi-day rain and snow event of the season, which occurred from 29 September to 3 October.

At the species level, Northern Goshawks, Red-tailed Hawks, and Golden Eagles showed significantly later than average median passage dates in 2005, whereas Turkey Vultures, Osprey, Northern Harriers, Sharp-shinned Hawks, Broad-winged Hawks, and American Kestrels all showed significantly earlier than average timing in 2005. Most other species showed median passage dates that were within two days of average. Age-specific data revealed three noteworthy clarifications: 1) the indicator of late species-level passage for Red-tailed Hawks primarily reflected late passage of adults; 2) the species-level indication of average timing for Cooper's Hawks was not reflected in the age-specific data for adults, which showed significantly late timing; and 3) the indicator of late species-level passage for Golden Eagles primarily reflected late passage of non-adults (Table 4).

# **RESIDENT RAPTORS**

During the first two weeks of the season, one resident Sharp-shinned Hawk and at least one Cooper's Hawk were regularly seen around the project site. Sightings of an apparently local Peregrine Falcon were noted during the first week of observations, as it "stooped" the owl decoy. A family of light-morph Red-tailed Hawks, including one immature bird and a pair of adults, also were resident in the area, with the young bird gone by early October but at least one adult still present when the project shut down in late October. A territorial pair of Golden Eagles was seen regularly, with their activity concentrated several drainages to the southwest of the observation point. One pair of adult American Kestrels frequented the area through mid-September.

This is a fairly typical resident assemblage for the site, except that local Turkey Vultures, Northern Harriers, and Prairie Falcons have frequented the area in past years

# **TRAPPING EFFORT**

Trapping occurred on 56 of 59 days between 25 August and 22 October, with effort totaling 828.19 station hours (see Appendix F for daily trapping records). The number of trapping days and station hours was comparable to 2002 and 2003, but significantly higher than other years (see Appendix G for annual trapping summaries).

#### **TRAPPING AND BANDING RESULTS**

The 2005 capture total of 623 newly banded birds of 10 species was the second highest total since HWI took over the banding program in 2001, 18% higher than the 2001–2004 average and 46% higher than the overall 1999–2004 average for the site (Table 5, Appendix G). Based on 1999–2004 averages, capture totals were above average for six species, significantly so for Northern Harriers, Cooper's Hawks, Roughlegged Hawks, and Merlins, with totals reaching new record highs for the latter three species. In contrast, capture totals were below average for five species, significantly so for Red-tailed Hawks and Prairie Falcons. The 2005 effort raised the total number of diurnal raptors captured at the site to 3,186 (Appendix G). The species captured most frequently in 2005 were the Sharp-shinned Hawk (65% of captures), Cooper's Hawk (19%), Merlin (4%), Red-tailed Hawk (4%), and Northern Goshawk (3%); all other species each comprised <2% of the total (Table 5). It was also a distinct pleasure for the crew to incidentally capture a Northern Pygmy Owl, the first of this species ever caught at the site.

Capture rates (birds captured per 100 station hours) reflected the same pattern as capture totals, whereas capture success—a better measure of the efficiency of our trappers—was significantly above average for Northern Goshawks and Red-tailed Hawks, at least slightly above average for five other species, and did not fall significantly below average for any species (Table 5). These statistics indicate that the trapping crew was efficient, and that low capture totals for Northern Goshawks and Red-tailed Hawks were definitely due to low passage volume.

Compared to the counts, banding at this site yields unique and substantial sex–age specific data only for the three accipiters and American Kestrels (Table 2). For Sharp-shinned Hawks and Northern Goshawks, both the count and banding data indicated significantly below average immature : adult ratios (19 and 26% below average for sharp-shins and 98 and 38% below average for goshawks). Further, the three times greater proportional drop in the count age ratio for goshawks compared to the capture-based age ratio suggests that immature goshawks were both much less common and more susceptible to capture than usual (i.e., hungrier than usual). For Cooper's Hawks, the count indicated a 118% above average age ratio, whereas the banding data indicated a 31% below average ratio. This suggests that immature Cooper's Hawks were relatively more abundant than usual and substantially less susceptible to capture than usual compared to adults. The capture data also uniquely indicated a 76% above-average female : male ratio for Northern Goshawks, whereas the capture-based sex ratios for Sharp-shinned and Cooper's Hawks were near average (Table 2).

The banding data uniquely indicated a 51% below average age ratio for American Kestrels (Table 2), as well as a 71% below-average sex ratio, suggesting that male kestrels may have been more susceptible than usual to capture in 2005. The capture total for kestrels was too low in 2005 to attach much significance to these statistics, however.

# **ENCOUNTERS WITH PREVIOUSLY BANDED BIRDS**

Since banding began at Chelan Ridge in 1999, 14 foreign encounters with Chelan-banded birds have been recorded (Table 7). Four new encounters occurred in 2005, two involving birds that were captured at other research sites. The first bird encountered in 2005 was a male Northern Goshawk that was found dead of unknown causes 113 km from Chelan Ridge near Tonasket, WA. The next bird was a female Sharp-shinned Hawk that was injured after colliding with a window while chasing passerines near a bird feeder. This third-year bird was released from rehabilitation and was described as healthy, although a bit obese from its time at the feeders! The next bird was a second-year, female Sharp-shinned Hawk, encountered as a next-season foreign recapture at HWI's Goshute Mountains migration site in northeastern Nevada (Smith and Neal 2006). This is the first such exchange documented between the Chelan and Goshute sites, and is the first Chelan bird to be encountered that far east besides a Golden Eagle that HWI tracked via satellite from the site to southeast New Mexico (see

http://www.hawkwatch.org/satelliteprogram.php). The last bird encountered in 2005 was female hatchyear Cooper's Hawk, which was a same-season exchange between Chelan Ridge and Golden Gate Raptor Observatory's migration research site 951 km south in the Marin Headlands of central California. Thus is the second exchange of banded birds recorded between these two sites.

#### **IDENTIFYING MIGRANT ORIGINS THROUGH STABLE ISOTOPE ANALYSES**

In 2005, HWI continued to collect feather samples from a variety of species to support on-going stableisotope research, which seeks to use analyses of hydrogen stable-isotope ratios to identify the approximate natal origins of migrants monitored across HWI's migration project network (e.g., Meehan et al. 2001, Lott et al. 2003, Lott and Smith in press).

# VISITOR PARTICIPATION AND PUBLIC OUTREACH

The 2005 visitor logs recorded 120 individuals, mostly from surrounding Washington communities as far away as Seattle. Most visitors came between 18 and 28 September, with 23 September being the day of highest visitor volume. Organized group visitation included the East Lake Audubon Society, Twisp Community School, The River Academy in Wenatchee, and a family of home schooled children.

In 2005, 515 hourly assessments by the observers of visitor disturbance resulted in the following ratings: 92% none, 7% low, 2% moderate, and 0% high. This low level of disturbance testifies to the advantages of having a full-time educator and other dedicated volunteers available to ensure enjoyable and informative visits for all guests without unnecessarily distracting the observers from their primary task of documenting the migration.

# ACKNOWLEDGEMENTS

Financial and logistical support for this project in 2005 was provided by Okanogan and Wenatchee National Forests, the Washington Department of Fish and Wildlife (WDFW), the Walbridge Fund, the Kittitas and Vancouver Audubon Societies, and HWI private donors and members. Numerous individuals were essential in helping us achieve successful promotion and implementation of this season's effort. Richard Hendrick once again provided invaluable support with project set-up, lure birds, firewood, food, and supplementing the observation crew. His eyes are important to this project. Brad Martin gets the prize for longevity and consistency of his support in providing pigeons that allow the trapping aspect to proceed. Tannis Thorlakson continued her dedication to the project and has nearly completed her internship requirements. Forest Service Visitor Services staff, including Tommy Days, Pat Tourangeau, Kathy Corrigan, and Sharon Cathcart, covered many bases, especially answering radio calls from the ridge each day, maintaining the tally board, interacting with visitors anxious to see the site, and especially presenting an interesting and informative visitor center display. Jim and Jesse Watson are conscientious helpers each year and this year was no exception. We greatly appreciate the connection to the WDFW that Jim and Area Wildlife Biologist Scott Fitkin provide. Rena Rex again kept the Chelan District involved with our efforts. The USFS staff and line support from District Biologist John Rohrer, District Ranger John Newcom, Forest Biologists Bob Naney and Bill Gaines, and Sarah Madsen, Elaine Rybak, and Robert Alvarado from the Regional Office was especially appreciated. It was also a pleasure to have a visit from USFS Regional Avian Program Coordinator Barb Bresson, who released the firstever Northern Pygmy Owl captured at the project site.

#### LITERATURE CITED

- Bildstein, K. L. 2001. Why migratory birds of prey make great biological indicators. Pages 169–179 *in*K. L. Bildstein and D. Klem (Editors). Hawkwatching in the Americas. Hawk Migration Association of North America, North Wales, Pennsylvania, USA.
- Hoffman, S. W., and J. P. Smith. 2003. Population trends of migratory raptors in western North America, 1977–2001. Condor 105:397–419.
- Hoffman, S. W., J. P. Smith, and T. D. Meehan. 2002. Breeding grounds, winter ranges, and migratory routes of raptors in the Mountain West. Journal of Raptor Research 36:97–110.
- Inzunza, E. R., S. W. Hoffman, L. J. Goodrich, and R. Tingay. 2000. Conservation strategies for the world's largest known raptor migration flyway: Veracruz the River of Raptors. Pages 591–596 in R. D. Chancellor and B.-U. Meyburg, editors. Raptors at risk. World Working Group on Birds of Prey and Owls, Berlin, Germany, and Hancock House Publishers, British Columbia and Washington.
- Kerlinger, P. 1989. Flight strategies of migrating hawks. University of Chicago Press, Chicago, Illinois. 375 pp.
- Meehan, T. D., C. A. Lott, Z. D. Sharp, R. B. Smith, R. N. Rosenfield, A. C. Stewart, and R. K. Murphy. 2001. Using hydrogen isotope geochemistry to estimate the natal latitudes of immature Cooper's Hawks migrating through the Florida Keys. Condor 103:11–20.
- Lott, C. A., T. D. Meehan, and J. A. Heath. 2003. Estimating the latitudinal origins of migratory raptors using hydrogen and sulfur stable isotopes in feathers: influence of marine prey base. Oecologia 134: 505-510.
- Lott, C. A., and J. P. Smith. In press. A GIS approach to estimating the origins of migratory raptors in North America using hydrogen stable isotope ratios in feathers. The Auk.
- Smith, J. P., and M. C. Neal. 2006a. Fall 2005 raptor migration studies in the Goshute Mountains of northeastern Nevada. HawkWatch International, Inc., Salt Lake City, Utah. 41 pp.
- Smith, J. P., and M. C. Neal. 2006b. Fall 2005 raptor migration studies in the Grand Canyon of Arizona. HawkWatch International, Inc., Salt Lake City, Utah. 32 pp.
- Smith, J. P., and M. C. Neal. 2005c. Fall 2005 raptor migration studies at Bonney Butte, Oregon. HawkWatch International, Inc., Salt Lake City, Utah. 33 pp.
- Smith, J. P., J. Simon, S. W. Hoffman, and C. Riley. 2001. New full-season autumn hawkwatches in coastal Texas. Pages 67–91 in K. L. Bildstein and D. Klem, editors. Hawkwatching in the Americas. Hawk Migration Association of North America, North Wales, Pennsylvania, USA.
- Smith, J. P., and S. W. Hoffman. 2000. The value of extensive raptor migration monitoring in western North America. Pages 597–615 in R. D. Chancellor and B.-U. Meyburg, editors. Raptors at risk. World Working Group on Birds of Prey and Owls, Berlin, Germany, and Hancock House Publishers, British Columbia, Canada, and Washington, USA.
- Zalles, J. I., and K. L. Bildstein (Editors). 2000. Raptor watch: a global directory of raptor migration sites. BirdLife Conservation Series No. 9. BirdLife International, Cambridge, United Kingdom, and Hawk Mountain Sanctuary Association, Kempton, Pennsylvania, USA.

|                                      | CO                          | UNTS |          | RAPTORS/100 HOURS      |       |          |  |
|--------------------------------------|-----------------------------|------|----------|------------------------|-------|----------|--|
| SPECIES                              | 1998–2004 <sup>1</sup>      | 2005 | % Change | 1998–2004 <sup>1</sup> | 2005  | % Change |  |
| Turkey Vulture                       | $27 \pm 7.3$                | 58   | +113     | 8.1 ± 2.54             | 18.5  | +126     |  |
| Osprey                               | $45 \pm 12.1$               | 25   | -44      | $12.7 \pm 3.68$        | 6.8   | -46      |  |
| Northern Harrier                     | $113 \pm 32.2$              | 113  | 0        | $26.3 \pm 7.97$        | 25.0  | -5       |  |
| White-tailed Kite                    | $0 \pm 0.3$                 | 0    | -100     | _                      | _     | _        |  |
| Sharp-shinned Hawk                   | $805 \pm 186.6$             | 730  | -9       | $218.4 \pm 58.80$      | 178.4 | -18      |  |
| Cooper's Hawk                        | $209 \pm 27.5$              | 228  | +9       | $60.3 \pm 10.52$       | 61.5  | +2       |  |
| Northern Goshawk                     | $30 \pm 9.5$                | 13   | -57      | $6.8 \pm 1.95$         | 2.7   | -60      |  |
| Unknown small accipiter <sup>2</sup> | $56 \pm 43.4$               | 48   | -14      | _                      | _     | _        |  |
| Unknown large accipiter <sup>2</sup> | $8 \pm 7.0$                 | 6    | -27      | _                      | _     | _        |  |
| Unknown accipiter                    | $95~\pm~74.8$               | 9    | -90      | _                      | _     | _        |  |
| TOTAL ACCIPITERS                     | $1176 \pm 247.3$            | 1034 | -12      | _                      | _     | -        |  |
| Broad-winged Hawk                    | $5 \pm 1.7$                 | 6    | +14      | $3.4 \pm 1.35$         | 3.4   | 0        |  |
| Swainson's Hawk                      | $8 \pm 4.7$                 | 2    | -74      | $2.6 \pm 1.66$         | 0.6   | -77      |  |
| Red-tailed Hawk                      | $312 \pm 67.7$              | 233  | -25      | $81.7 \pm 17.08$       | 51.5  | -37      |  |
| Ferruginous Hawk                     | $0 \pm 0.3$                 | 0    | -100     | $0.2 \pm 0.31$         | 0.0   | -100     |  |
| Rough-legged Hawk                    | $29 \pm 13.1$               | 22   | -24      | $14.8 \pm 4.98$        | 10.9  | -26      |  |
| Unidentified buteo                   | $75 \pm 31.9$               | 29   | -61      | _                      | _     | _        |  |
| TOTAL BUTEOS                         | $429 \pm 106.9$             | 292  | -32      | _                      | _     | _        |  |
| Golden Eagle                         | $126 \pm 27.7$              | 130  | +3       | $28.5 \pm 5.77$        | 29.3  | +3       |  |
| Bald Eagle                           | $5 \pm 3.8$                 | 4    | -24      | $1.2 \pm 0.79$         | 0.9   | -22      |  |
| Unidentified eagle                   | $4 \pm 3.4$                 | 2    | -44      | _                      | —     | _        |  |
| TOTAL EAGLES                         | $135 \pm 32.0$              | 136  | +1       | _                      | _     | _        |  |
| American Kestrel                     | $67 \pm 20.6$               | 55   | -18      | $19.4 \pm 6.84$        | 13.4  | -31      |  |
| Merlin                               | $36 \pm 8.0$                | 53   | +48      | $9.1 \pm 2.51$         | 12.5  | +38      |  |
| Prairie Falcon                       | $8 \pm 3.8$                 | 4    | -51      | $2.2 \pm 0.86$         | 1.4   | -33      |  |
| Peregrine Falcon                     | $6 \pm 3.5$                 | 4    | -38      | $1.6 \pm 0.72$         | 1.6   | +2       |  |
| Unknown small falcon <sup>2</sup>    | $5 \pm 0.9$                 | 1    | -81      | _                      | _     | _        |  |
| Unknown large falcon <sup>2</sup>    | $2 \pm 0.5$                 | 3    | +71      | _                      | _     | _        |  |
| Unknown falcon                       | $3 \pm 1.9$                 | 0    | -100     | _                      | —     | _        |  |
| TOTAL FALCONS                        | $124 \pm 26.0$              | 120  | -3       |                        | _     | _        |  |
| Unidentified raptor                  | $135 \pm 54.8$              | 48   | -65      | _                      | _     | _        |  |
| GRAND TOTAL                          | $2\overline{184 \pm 397.8}$ | 1826 | -16      | -                      | _     | _        |  |

Table 1. Fall counts and adjusted passage rates (truncated to standardized annual samplingperiods and adjusted for incompletely identified birds) by species for migrating raptors at ChelanRidge, WA: 1998–2004 versus 2005.

<sup>1</sup> Mean  $\pm$  95% confidence interval.

<sup>2</sup> Designations used for the first time in 2001.

|                    | Т      | OTAL A  | ND AGE-C | LASSIFIED | COUN |       |                        | Immature : A | ADULT                  |      |
|--------------------|--------|---------|----------|-----------|------|-------|------------------------|--------------|------------------------|------|
|                    | 1998–2 | 2004 Av | VERAGE   |           | 2005 |       | % UNKNOWN AGE          |              | Ratio                  |      |
|                    | TOTAL  | Імм     | ADULT    | TOTAL     | Імм  | ADULT | 1998–2004 <sup>1</sup> | 2005         | 1998–2004 <sup>1</sup> | 2005 |
| Northern Harrier   | 113    | 40      | 29       | 113       | 24   | 18    | 40 ± 7.6               | 63           | $1.4\pm0.41$           | 1.3  |
| Sharp-shinned Hawk | 805    | 405     | 126      | 730       | 398  | 129   | 34 ± 8.9               | 28           | 3.7 ± 1.89             | 3.1  |
| Cooper's Hawk      | 209    | 94      | 28       | 228       | 135  | 17    | 43 ± 9.9               | 33           | 3.8 ± 1.94             | 7.9  |
| Northern Goshawk   | 30     | 15      | 5        | 13        | 3    | 5     | 38 ± 11.2              | 38           | 5.4 ± 3.36             | 0.6  |
| Broad-winged Hawk  | 5      | 2       | 1        | 6         | 1    | 2     | 38 ± 21.7              | 50           | $1.5 \pm 1.00$         | 0.5  |
| Red-tailed Hawk    | 312    | 75      | 140      | 233       | 21   | 127   | 30 ± 5.6               | 36           | $0.6\pm0.15$           | 0.2  |
| Golden Eagle       | 126    | 63      | 28       | 130       | 44   | 28    | 27 ± 4.7               | 45           | $2.3 \pm 0.41$         | 1.6  |
| Bald Eagle         | 5      | 1       | 4        | 4         | 1    | 3     | 9 ± 13.9               | 0            | $0.2\pm0.28$           | 1.0  |
| Peregrine Falcon   | 6      | 1       | 2        | 4         | 3    | 1     | 54 ± 22.1              | 0            | 1.1 ± 1.29             | 3.0  |

Table 2. Fall counts by age class and immature : adult ratios for selected species of migratingraptors at Chelan Ridge, WA: 1998–2004 versus 2005.

<sup>1</sup> Mean  $\pm$  95% confidence interval. For age ratios, note that long-term mean immature : adult ratios are averages of annual ratios and may differ from values obtained by dividing average numbers of immatures and adults. Discrepancies in the two values reflect high annual variability in the observed age ratio.

|                    |          |          | 2005                       |                           | 1998–2004                    |
|--------------------|----------|----------|----------------------------|---------------------------|------------------------------|
|                    | First    | LAST     | BULK                       | MEDIAN                    | MEDIAN                       |
| SPECIES            | OBSERVED | Observed | PASSAGE DATES <sup>1</sup> | PASSAGE DATE <sup>2</sup> | PASSAGE DATE <sup>2, 3</sup> |
| Turkey Vulture     | 26-Aug   | 1-Oct    | 1-Sep – 18-Sep             | 8-Sep                     | 17-Sep ± 4.5                 |
| Osprey             | 27-Aug   | 13-Oct   | 31-Aug – 8-Oct             | 6-Sep                     | 20-Sep ± 1.1                 |
| Northern Harrier   | 24-Aug   | 24-Oct   | 1-Sep - 11-Oct             | 18-Sep                    | 23-Sep ± 2.0                 |
| Sharp-shinned Hawk | 24-Aug   | 25-Oct   | 3-Sep – 9-Oct              | 18-Sep                    | 21-Sep ± 2.5                 |
| Cooper's Hawk      | 24-Aug   | 22-Oct   | 1-Sep – 4-Oct              | 17-Sep                    | 18-Sep ± 2.6                 |
| Northern Goshawk   | 26-Aug   | 21-Oct   | 2-Sep - 14-Oct             | 6-Oct                     | 23-Sep ± 5.6                 |
| Broad-winged Hawk  | 7-Sep    | 15-Sep   | 7-Sep – 15-Sep             | 7-Sep                     | 14-Sep ± 1.8                 |
| Swainson's Hawk    | 14-Sep   | 8-Oct    | _                          | _                         | 14-Sep ± 6.5                 |
| Red-tailed Hawk    | 24-Aug   | 23-Oct   | 31-Aug – 15-Oct            | 27-Sep                    | 24-Sep ± 2.3                 |
| Rough-legged Hawk  | 30-Sep   | 23-Oct   | 7-Oct – 21-Oct             | 16-Oct                    | $15-Oct \pm 4.4$             |
| Golden Eagle       | 27-Aug   | 25-Oct   | 6-Sep – 22-Oct             | 6-Oct                     | $03-Oct \pm 2.3$             |
| Bald Eagle         | 31-Aug   | 15-Oct   | -                          | _                         | $15-Oct \pm 7.4$             |
| American Kestrel   | 24-Aug   | 13-Oct   | 25-Aug – 28-Sep            | 3-Sep                     | 14-Sep ± 5.4                 |
| Merlin             | 27-Aug   | 22-Oct   | 3-Sep – 8-Oct              | 19-Sep                    | 21-Sep ± 3.7                 |
| Prairie Falcon     | 24-Aug   | 7-Sep    | _                          | _                         | 19-Sep ± 8.6                 |
| Peregrine Falcon   | 27-Aug   | 13-Sep   | _                          | _                         | 19-Sep ± 10.8                |
| Total              | 27-Aug   | 25-Oct   | 1-Sep – 11-Oct             | 18-Sep                    | 23-Sep ± 1.5                 |

Table 3. First and last observed, bulk-passage, and median-passage dates by species for migrating raptors at Chelan Ridge, WA in 2005, with a comparison of 2005 and 1998–2004 average median passage dates.

<sup>1</sup> Dates between which the central 80% of the flight passed the lookout.

<sup>2</sup> Date by which 50% of the flight had passed the lookout.

<sup>3</sup> Mean of annual values  $\pm$  95% confidence interval in days; unless otherwise indicated, values are given only for species with annual counts  $\geq$ 5 birds for  $\geq$ 3 years.

|                    |                 | ADULT            |        |        | IMMATURE           |        |
|--------------------|-----------------|------------------|--------|--------|--------------------|--------|
| SPECIES            | 1998–2          | 004 <sup>1</sup> | 2005   | 1998-  | -2004 <sup>1</sup> | 2005   |
| Northern Harrier   | 22-Sep ±        | ± 3.7            | 21-Sep | 23-Sep | ± 2.8              | 18-Sep |
| Sharp-shinned Hawk | 02-Oct ±        | ± 1.7            | 1-Oct  | 15-Sep | ± 2.1              | 14-Sep |
| Cooper's Hawk      | 25-Sep ±        | ± 2.4            | 4-Oct  | 13-Sep | ± 1.8              | 14-Sep |
| Northern Goshawk   | 09-Oct ±        | ± 10.8           | 6-Oct  | 23-Sep | ± 4.6              | _      |
| Red-tailed Hawk    | 27-Sep 🗄        | ± 2.0            | 4-Oct  | 16-Sep | ± 4.6              | 13-Sep |
| Golden Eagle       | 06-Oct <u>+</u> | ± 3.4            | 4-Oct  | 02-Oct | ± 1.5              | 11-Oct |

Table 4. Median passage dates by age for selected species of migrating raptors at Chelan Ridge,WA: 1998–2004 versus 2005.

Note: Median passage dates are dates by which 50% of species/age-specific flights had passed; values are based only on annual counts  $\geq$ 5 birds.

<sup>1</sup> Mean  $\pm$  95% confidence interval in days; values are given only for species with annual counts  $\geq$ 5 birds for  $\geq$  3 years.

|                    | CAPTURE TOT            | TALS | CAPTURE RA                 | TE <sup>1</sup> |   | CAPTURE SUC            | CESS <sup>2</sup> |
|--------------------|------------------------|------|----------------------------|-----------------|---|------------------------|-------------------|
| -                  | 1999–2004 <sup>3</sup> | 2005 | <br>1999–2004 <sup>3</sup> | 2005            | - | 1999–2004 <sup>3</sup> | 2005              |
| Northern Harrier   | 8 ± 3.3                | 12   | 1.3 ± 0.29                 | 1.4             |   | 9.1 ± 5.2              | 7.5               |
| Sharp-shinned Hawk | $283~\pm~110.0$        | 389  | $45.8\pm9.09$              | 47.0            |   | 39.1 ± 21.1            | 38.5              |
| Cooper's Hawk      | $80\pm28.7$            | 137  | $12.8\pm3.15$              | 16.5            |   | 37.9 ± 13.9            | 35.7              |
| Northern Goshawk   | $12 \pm 2.1$           | 11   | $2.1~\pm~0.83$             | 1.3             |   | $47.4\pm20.8$          | 93.4              |
| Red-tailed Hawk    | $18 \pm 6.1$           | 11   | $2.9\pm0.51$               | 1.3             |   | $4.3 \pm 1.7$          | 6.5               |
| Rough-legged Hawk  | $0.8\pm0.60$           | 5    | $0.1~\pm~0.09$             | 0.6             |   | $5.8 \pm 7.3$          | 6.0               |
| Golden Eagle       | $2 \pm 1.2$            | 2    | $0.2\pm0.19$               | 0.2             |   | $0.9\pm0.6$            | 1.2               |
| American Kestrel   | $7.2\pm4.79$           | 6    | $1.2\pm0.49$               | 0.7             |   | $8.5\pm4.6$            | 12.5              |
| Merlin             | $14~\pm~6.8$           | 49   | $2.3\pm0.66$               | 5.9             |   | $47.6\pm29.0$          | 35.6              |
| Prairie Falcon     | $2 \pm 1.2$            | 0    | $0.4~\pm~0.14$             | 0.0             |   | $24.4~\pm~19.0$        | 33.3              |
| Peregrine Falcon   | $1.2 \pm 1.3$          | 1    | $0.2\pm0.19$               | 0.1             |   | $14.3~\pm~20.9$        | 19.0              |
| All species        | 427 ± 159.8            | 623  | 69.4 ± 13.44               | 75.2            |   | 24.5 ± 11.3            | 26.9              |

Table 5. Fall capture totals, rates, and successes by species for migrating raptors at Chelan Ridge,WA: 1999–2004 versus 2005.

<sup>1</sup> Captures / 100 station hours.

<sup>2</sup> Number of birds captured / number of birds observed. The combined-species value was calculated excluding Ospreys, Turkey Vultures, and unknown raptors from the count totals. Species-specific values were calculated after birds identified only to genus were allocated across possible species in proportion to the relative abundance of birds identified to those species.

 $^3$  Mean of annual values  $\pm$  95% confidence interval; data collected by the Falcon Research Group in 1999 and 2000.

|                    |                | Female Male I |     | FEMALE : MALE | IMM. : ADULT |                |                |  |
|--------------------|----------------|---------------|-----|---------------|--------------|----------------|----------------|--|
| SPECIES            | YEARS          | HY            | AHY | HY            | AHY          | RATIO          | Ratio          |  |
| Sharp-shinned Hawk | Avg. 2001–2004 | 144           | 48  | 138           | 28           | $1.2 \pm 0.18$ | 3.7 ± 0.94     |  |
|                    | 2005           | 155           | 60  | 133           | 47           | 1.2            | 2.7            |  |
| Cooper's Hawk      | Avg. 2001–2004 | 36            | 22  | 32            | 9            | $1.6 \pm 0.51$ | $2.2 \pm 0.67$ |  |
|                    | 2005           | 55            | 27  | 47            | 8            | 1.5            | 2.9            |  |
| Northern Goshawk   | Avg. 2001–2004 | 3             | 1   | 7             | 1            | 0.5 ± 0.22     | 7.2 ± 4.68     |  |
|                    | 2005           | 4             | 1   | 6             | 0            | 0.8            | 10.0           |  |
| American Kestrel   | Avg. 2001–2004 | 1             | 1   | 6             | 1            | $0.2 \pm 0.08$ | 4.1 ± 3.89     |  |
|                    | 2005           | 1             | 0   | 3             | 2            | 0.2            | 2.0            |  |

Table 6. Fall capture totals by sex and age (HY = hatching year; AHY = after hatching year), female : male capture ratios, and immature : adult capture ratios for selected species of migrating raptors at Chelan Ridge, WA: 2001–2004 versus 2005.

<sup>1</sup> Mean  $\pm$  95% CI.

| BAND #       | SPECIES <sup>1</sup> | Sex | BANDING<br>DATE | BANDING<br>AGE <sup>2</sup> | ENCOUNTER<br>LOCATION | Encounter<br>Date | ENCOUNTER<br>AGE <sup>2</sup> | DISTANCE<br>(KM) | STATUS                  |
|--------------|----------------------|-----|-----------------|-----------------------------|-----------------------|-------------------|-------------------------------|------------------|-------------------------|
| ? - ?        | СН                   | ?   | 16-Sep-00       | HY                          | Edwards AFB, CA       | 4-Oct-00          | HY                            | 583              | found dead              |
| 1593 - 02001 | SS                   | F   | 30-Aug-01       | HY                          | Fallon, NV            | 16-Sep-01         | HY                            | 798              | hit by car / captive    |
| 1293 - 25056 | ML                   | F   | 13-Sep-01       | HY                          | Bend, OR              | 25-Sep-01         | HY                            | 376              | hit by car / euthanized |
| 1593 - 02076 | SS                   | F   | 02-Oct-01       | HY                          | Bonney Butte, OR      | 10-Oct-01         | HY                            | 288              | research recapture      |
| 1593 - 02002 | SS                   | F   | 02-Sep-01       | HY                          | Georgetown, CA        | 14-Oct-01         | HY                            | 831              | collision kill          |
| 1202 - 22157 | SS                   | М   | 24-Sep-01       | HY                          | Marin Headlands, CA   | 26-Oct-01         | HY                            | 957              | research recapture      |
| 1177 - 06406 | RT                   | U   | 05-Oct-01       | ASY                         | Clinton, BC           | 21-Oct-02         | ATY                           | 312              | found dead              |
| 1573 - 60662 | SS                   | F   | 21-Sep-02       | HY                          | Stinson Beach, CA     | 24-Nov-02         | HY                            | 956              | found dead              |
| 1593 - 02189 | SS                   | F   | 26-Sep-01       | HY                          | Nampa, ID             | 06-Dec-03         | TY                            | 574              | found dead              |
| 1483 - 55870 | SS                   | F   | 13-Sep-04       | HY                          | Bonney Butte, OR      | 13-Oct-04         | HY                            | 288              | research recapture      |
| 2206 - 55543 | NG                   | М   | 14-Oct-03       | HY                          | Tonasket, WA          | 29-Dec-05         | TY                            | 113              | found dead              |
| 1005 - 01200 | СН                   | F   | 27-Aug-05       | HY                          | Marin Headlands, CA   | 19-Oct-05         | HY                            | 951              | research recapture      |
| 1573 - 60818 | SS                   | F   | 04-Oct-04       | SY                          | Prince George, BC     | 03-Apr-05         | TY                            | 598              | injured / released      |
| 1483 - 55867 | SS                   | F   | 10-Sep-04       | HY                          | Goshute Mountains, NV | 17-Oct-05         | SY                            | 948              | research recapture      |

Table 7. Foreign encounters of raptors banded at the Chelan Ridge Raptor Migration Project: 2000–2005.

<sup>1</sup> SS = Sharp-shinned Hawk; CH = Cooper's Hawk; ML = Merlin.

<sup>2</sup> HY = hatch year, SY = second year; TY = third year; AHY = after hatch year; ASY = after second year; ATY = after third year.



Figure 1. Location of the Chelan Ridge Raptor Migration Project count and banding sites in north-central Washington.



Figure 2. Fall raptor migration flight composition by major species groups at Chelan Ridge, WA: 1998–2004 versus 2005.



Figure 3. Adjusted fall-migration passage rates at Chelan Ridge, WA for Turkey Vultures, Ospreys, and Northern Harriers: 1998–2005. Dashed lines indicate significant linear or quadratic regressions.



Figure 4. Adjusted fall-migration passage rates at Chelan Ridge, WA for Sharp-shinned Hawks, Cooper's Hawks, and Northern Goshawks: 1998–2005. Dashed lines indicate significant linear or quadratic regressions.



Figure 5. Adjusted fall-migration passage rates at Chelan Ridge, WA for Broad-winged, Swainson's, Red-tailed, and Rough-legged Hawks: 1998–2005. Dashed lines indicate significant linear or quadratic regressions.



Figure 6. Adjusted fall-migration passage rates at Chelan Ridge, WA for Golden and Bald Eagles: 1998–2005. Dashed lines indicate significant linear or quadratic regressions.



Figure 7. Adjusted fall-migration passage rates at Chelan Ridge, WA for American Kestrels, Merlins, Prairie Falcons, and Peregrine Falcons: 1998–2005. Dashed lines indicate significant linear or quadratic regressions.



Figure 8. Combined-species passage volume by five-day periods for migrating raptors at Chelan Ridge, WA: 1998–2004 versus 2005.

# Appendix A. History of official observer participation in the Chelan Ridge Raptor Migration Project.

**1997:** Single observer throughout: Dan Rossman (0)

1998: Two observers throughout: Steve Seibel (partial), Susan Crampton (0), Richard Hendrick (0).

1999: Two observers throughout: Dan Harrington (1), Richard Hendrick (1).

2000: Two observers throughout: Dan Harrington (2), Richard Hendrick (2).

**2001:** Two observers throughout: Richard Hendrick (3; first half of season), Wendy King (0), Don Loock (0; primarily second half of season), Dan Harrington (3; training and substitute observer).

**2002:** Two observers throughout: Mark Leavens (0), Teresa Lorenz (0), Dan Harrington (3+; training and substitute observer), Richard Hendrick (4; regular substitute).

**2003:** Two observers throughout: Ben Kinkade ( $\sim$ 1/2), Blake Mathys (0), Dan Harrington (3+; training and substitute observer), Richard Hendrick (4+; regular substitute).

**2004:** Two observers throughout: Dan Russell (1), Aran Meyer (0), Richard Hendrick (4+; regular substitute).

**2005:** Two observers throughout: Angela Sjollema (0), James Waddell (0; first half), Steve Seibel (3+; second half), and regular substitutes Richard Hendrick (4+) and Dan Russell (2).

<sup>&</sup>lt;sup>1</sup> Numbers in parentheses indicate the number of years of previous experience conducting season-long migratory raptor counts.

| COMMON NAME             | SCIENTIFIC NAME              | Species<br>Code | $AGE^1$                          | SEX <sup>2</sup> | COLOR<br>MORPH <sup>3</sup> |
|-------------------------|------------------------------|-----------------|----------------------------------|------------------|-----------------------------|
| Turkey Vulture          | Cathartes aura               | TV              | U                                | U                | NA                          |
| Osprey                  | Pandion haliaetus            | OS              | U                                | U                | NA                          |
| Northern Harrier        | Circus cyaneus               | NH              | AM AF I Br U                     | AM AF U          | NA                          |
| White-tailed Kite       | Elanus leucurus              | WK              | A, I, U                          | U                | NA                          |
| Sharp-shinned Hawk      | Accipiter striatus           | SS              | AIU                              | U                | NA                          |
| Cooper's Hawk           | Accipiter cooperii           | СН              | AIU                              | U                | NA                          |
| Northern Goshawk        | Accipiter gentilis           | NG              | AIU                              | U                | NA                          |
| Unknown small accipiter | A. striatus or cooperii      | SA              | U                                | U                | NA                          |
| Unknown large accipiter | A. cooperii or gentilis      | LA              | U                                | U                | NA                          |
| Unknown accipiter       | Accipiter spp.               | UA              | U                                | U                | NA                          |
| Broad-winged Hawk       | Buteo platypterus            | BW              | AIU                              | U                | DLU                         |
| Swanson's Hawk          | Buteo swainsoni              | SW              | U                                | U                | DLU                         |
| Red-tailed Hawk         | Buteo jamaicensis            | RT              | AIU                              | U                | DLU                         |
| Ferruginous Hawk        | Buteo regalis                | FH              | AIU                              | U                | DLU                         |
| Rough-legged Hawk       | Buteo lagopus                | RL              | U                                | U                | DLU                         |
| Unknown buteo           | <i>Buteo</i> spp.            | UB              | U                                | U                | DLU                         |
| Golden Eagle            | Aquila chrysaetos            | GE              | I, S, NA, A, $U^4$               | U                | NA                          |
| Bald Eagle              | Haliaeetus leucocephalus     | BE              | I, S1, S2, NA, A, U <sup>5</sup> | U                | NA                          |
| Unknown eagle           | Aquila or Haliaeetus spp.    | UE              | U                                | U                | NA                          |
| American Kestrel        | Falco sparverius             | AK              | U                                | M F U            | NA                          |
| Merlin                  | Falco columbarius            | ML              | AM Br U                          | AM Br U          | NA                          |
| Prairie Falcon          | Falco mexicanus              | PR              | U                                | U                | NA                          |
| Peregrine Falcon        | Falco peregrinus             | PG              | AIU                              | U                | NA                          |
| Unknown small falcon    | F. sparverius or columbarius | SF              | U                                | U                | NA                          |
| Unknown large falcon    | F. mexicanus or peregrinus   | LF              | U                                | U                | NA                          |
| Unknown falcon          | <i>Falco</i> spp.            | UF              | U                                | U                | NA                          |
| Unknown raptor          | Falconiformes                | UU              | U                                | U                | NA                          |

Appendix B. Common and scientific names, species codes, and regularly applied age, sex, and color-morph classifications for all diurnal raptor species observed during fall migration at Chelan Ridge, WA.

<sup>1</sup> Age codes: A = adult, I = immature (HY), Br = brown (adult female or immature), U = unknown age.

<sup>2</sup> Sex codes: M = male, F = female, U = unknown.

<sup>3</sup> Color morph codes: D = dark or rufous, L = light, U - unknown, NA = not applicable.

<sup>4</sup> Golden Eagle age codes: I = Immature: juvenile or first-year bird, bold white wing patch visible below, bold white in tail, no molt; S = Subadult: white wing patch variable or absent, obvious white in tail and molt or tawny bar visible on upper wing; NA = Not adult: unknown age immature/subadult; A = Adult: no white in wings or tail; U = Unknown.

<sup>5</sup> Bald Eagle age codes: I = Immature: juvenile or first-year bird, dark breast and tawny belly; S1 = young Subadult: Basic I and II plumages, light belly, upside-down triangle on back; S2 = older Subadult: Basic III plumage, head mostly white with osprey-like dark eye line and dark band on tail; NA = Not adult: unknown age immature/subadult; A = Adult: includes near adult with dark flecks in head and dark tail tip, and adult with white head and tail; U = Unknown.

|        | OBS.  | Obsrvr              | VISITOR              | PREDOMINANT           | Speed              | WIND          | Temp              | PRESS.               | THERMAL           | WEST     | East     | Flight                | Birds  |
|--------|-------|---------------------|----------------------|-----------------------|--------------------|---------------|-------------------|----------------------|-------------------|----------|----------|-----------------------|--------|
| DATE   | HOURS | / HOUR <sup>1</sup> | DISTURB <sup>2</sup> | WEATHER <sup>3</sup>  | (KPH) <sup>1</sup> | DIRECTION     | $(^{\circ}C)^{1}$ | (IN HG) <sup>1</sup> | LIFT <sup>4</sup> | $(KM)^1$ | $(KM)^1$ | DISTANCE <sup>5</sup> | / Hour |
| 24-Aug | 9.00  | 2.0                 | 0                    | clr-pc                | 6.2                | sse-sw, nnw   | 31.1              | 30.78                | 1                 | 100      | 100      | 2                     | 2.1    |
| 25-Aug | 9.00  | 1.3                 | 0                    | clr-pc                | 9.0                | S-SW          | 26.7              | 30.86                | 1                 | 98       | 98       | 2                     | 1.4    |
| 26-Aug | 9.00  | 2.0                 | 2                    | clr                   | 19.9               | S-SW          | 24.6              | 30.81                | 2                 | 92       | 92       | 2                     | 1.8    |
| 27-Aug | 9.00  | 2.7                 | 0                    | clr                   | 12.8               | S-SW          | 26.1              | 30.77                | 2                 | 100      | 100      | 3                     | 3.8    |
| 28-Aug | 9.17  | 2.8                 | 0                    | clr-mc                | 16.6               | S-SW          | 22.5              | 30.63                | 2                 | 100      | 100      | 2                     | 3.3    |
| 29-Aug | 9.00  | 2.0                 | 0                    | pc-mc                 | 17.7               | S-SSW         | 17.3              | 30.58                | 3                 | 97       | 94       | 3                     | 0.7    |
| 30-Aug | 9.17  | 2.0                 | 0                    | clr-mc                | 9.8                | SW            | 18.8              | 30.86                | 3                 | 95       | 87       | 1                     | 0.5    |
| 31-Aug | 9.08  | 2.0                 | 0                    | clr                   | 14.3               | SW            | 23.0              | 30.87                | 2                 | 100      | 100      | 2                     | 2.6    |
| 1-Sep  | 9.00  | 1.9                 | 1                    | clr-mc                | 11.0               | S-SW          | 23.7              | 30.78                | 2                 | 99       | 100      | 3                     | 4.8    |
| 2-Sep  | 8.50  | 2.0                 | 0                    | clr-ovc               | 18.9               | S-SW          | 23.6              | 30.63                | 3                 | 100      | 100      | 2                     | 3.1    |
| 3-Sep  | 9.17  | 2.0                 | 0                    | pc-ovc                | 16.8               | SW            | 21.9              | 30.68                | 3                 | 100      | 100      | 2                     | 5.0    |
| 4-Sen  | 9.00  | 1.0                 | 0                    | mc-ovc                | 11.3               | SW            | 18.9              | 30.72                | 3                 | 95       | 100      | 2                     | 3.2    |
| 5-Sep  | 9.00  | 2.0                 | Ő                    | clr-pc                | 7.5                | n. sw         | 22.6              | 30.90                | 1                 | 100      | 100      | 3                     | 2.8    |
| 6-Sep  | 7.00  | 2.0                 | Ő                    | nc                    | 10.2               | n, sw         | 25.2              | 30.92                | 2                 | 100      | 100      | 3                     | 74     |
| 7-Sen  | 9.00  | 19                  | 1                    | clr-nc                | 11.0               | s-sw          | 25.6              | 30.89                | 1                 | 100      | 100      | 3                     | 11.8   |
| 8-Sen  | 9.00  | 2.0                 | 0                    | clr-nc                | 13.2               | sse sw        | 22.0              | 30.65                | 2                 | 100      | 100      | 2                     | 63     |
| 9-Sen  | 3.75  | 1.0                 | 0                    | mc rain               | 9.8                | nne sw-w      | 13.5              | 30.42                | 4                 | 93       | 59       | -                     | 0.5    |
| 10-Sen | 2 12  | 2.0                 | 0                    | ove scat rain         | 5.5                | nnw           | 14.0              | 30.57                |                   | 73       | 58       | 2                     | 2.5    |
| 11 Sen | 6.83  | 2.0                 | 0                    | ove, seat fog/rain    | 7.4                | eew.          | 10.7              | 30.70                |                   | 18       | 13       | 1                     | 0.4    |
| 12-Sen | 7.83  | 2.0                 | 0                    | me-ove seat rain      | 6.2                | calm-yar      | 13.7              | 30.73                | 4                 | 76       | 76       | 2                     | 0.4    |
| 12-Sep | 8.83  | 2.0                 | 0                    | clr-nc                | 14.0               | cann-var.     | 18.7              | 30.78                | 2                 | 100      | 100      | 2                     | 19     |
| 13-Sep | 0.00  | 2.0                 | 0                    | eli-pe                | 7.2                | oolm a aw     | 10.2              | 20.70                | 2                 | 100      | 100      | 2                     | 12.6   |
| 14-Sep | 9.00  | 2.0                 | 0                    |                       | 1.2                | calm sw       | 10.0              | 20.68                | 2                 | 100      | 100      | 3                     | 12.0   |
| 16 San | 5.00  | 2.0                 | 0                    | pc-ove                | 4.0                | callit, Sw    | 10.5              | 20.62                | 3                 | 01       | 76       | 2                     | 4.0    |
| 10-Sep | 5.00  | 2.0                 | 0                    | ove, seat fain        | 13.7               | nnw-nne       | 11.5              | 20.05                | 4                 | 91       | /0       | 3                     | 0.8    |
| 17-Sep | 9.00  | 2.0                 | 0                    | pe-me                 | /.0                | nnw-nne, ssw  | 10.0              | 20.76                | 2                 | 100      | 100      | 2                     | 1.0    |
| 10 Sep | 9.00  | 5.2<br>2.0          | 0                    | cii-iiic              | 14.4               | 8-8W          | 10.1              | 20.70                | 2                 | 100      | 100      | 1                     | 14.4   |
| 19-Sep | 9.00  | 2.0                 | 0                    | cii-pc                | 13.1               | SSW           | 10.0              | 20.96                | 5                 | 100      | 100      | 3                     | 2.6    |
| 20-Sep | 9.00  | 2.0                 | 0                    | cli<br>-la            | 4.0                | SSW           | 17.0              | 20.80                | 1                 | 100      | 100      | 2                     | 5.0    |
| 21-Sep | 9.00  | 1.0                 | 0                    | CII<br>-1             | 8.0                | 11, 5         | 14.4              | 20.88                | 2                 | 100      | 100      | 2                     | 4.2    |
| 22-Sep | 8.00  | 1.9                 | 0                    | cir-ovc               | 8.0                | n, caim, nnw  | 11.2              | 30.71                | 2                 | 100      | 100      | 2                     | 2.8    |
| 23-Sep | 9.00  | 2.0                 | 0                    | cir                   | 10.0               | nw-n          | 15.1              | 20.79                | 5                 | 100      | 100      | 2                     | 2.5    |
| 24-Sep | 9.00  | 1.1                 | 0                    | cir                   | 8.0                | nnw-nne, caim | 15.9              | 30.78                | 1                 | 98       | 100      | 3                     | 3.0    |
| 25-Sep | 7.50  | 2.4                 | 0                    | cir                   | 17.8               | SW            | 15.4              | 30.83                | 5                 | 100      | 100      | 2                     | 2.7    |
| 20-Sep | 9.00  | 1.9                 | 0                    | cir-pc                | 8.0                | S-SW          | 17.7              | 30.73                | 1                 | 100      | 100      | 2                     | 5.2    |
| 27-Sep | 9.00  | 1./                 | 0                    | cir                   | 8.0                | n, s, ssw     | 17.0              | 30.88                | 2                 | 100      | 100      | 3                     | 4.9    |
| 28-Sep | 9.00  | 1.9                 | 0                    | cir-mc                | 18.2               | S-SSW         | 16.7              | 30.91                | 2                 | 100      | 100      | 1                     | 4.9    |
| 29-Sep | /.00  | 2.0                 | 0                    | ovc, scat rain        | 37.0               | S             | 14.0              | 30.51                | 4                 | //       | 53       | 1                     | 1.6    |
| 30-Sep | 8.50  | 1.8                 | 0                    | ove, PM rain          | 26.5               | S-SSW         | 11.3              | 30.39                | 4                 | 95       | 64       | 2                     | 1.2    |
| 1-Oct  | 9.00  | 2.0                 | 0                    | mc-ovc, scat snow     | 9.3                | S-SSW         | 9.2               | 30.33                | 4                 | 96       | /5       | 1                     | 2.1    |
| 2-Oct  | 7.50  | 1.9                 | 0                    | ovc, PM snow          | 5.3                | calm, ssw     | 5.0               | 30.48                | 4                 | 57       | 43       | 2                     | 1.6    |
| 3-Oct  | 0.00  |                     | 0                    | weather day           | - 0                |               |                   | 20.00                |                   | 100      |          | 2                     |        |
| 4-Oct  | 8.00  | 2.2                 | 0                    | pc-ovc                | 5.9                | ssw, nw       | 11.0              | 30.89                | 4                 | 100      | 52       | 3                     | 5.0    |
| 5-Oct  | 4.25  | 3.0                 | 0                    | ovc, AM fog           | 6.8                | SSW           | 5.9               | 30.36                | 4                 | 29       | 6        | 1                     | 0.9    |
| 6-Oct  | 8.00  | 1.6                 | 0                    | ovc, PM rain/fog      | 14.0               | SSW           | 7.1               | 29.92                | 4                 | 62       | 11       | 2                     | 2.8    |
| 7-Oct  | 7.50  | 2.2                 | 0                    | mc-ovc                | 11.6               | SW            | 6.9               | 29.81                | 4                 | 97       | 71       | 2                     | 1.6    |
| 8-Oct  | 9.00  | 2.0                 | 0                    | pc-ovc                | 8.6                | SSW           | 8.5               | 29.77                | 3                 | 100      | 49       | 3                     | 6.9    |
| 9-Oct  | 8.50  | 2.2                 | 0                    | clr-pc                | 12.8               | sse-ssw       | 7.7               | 30.13                | 3                 | 74       | 90       | 1                     | 8.8    |
| 10-Oct | 7.50  | 1.9                 | 0                    | mc-ovc, scat fog/rain | 20.9               | SSW           | 6.8               | 30.01                | 4                 | 41       | 17       | 1                     | 2.5    |
| 11-Oct | 9.00  | 2.2                 | 0                    | clr                   | 11.2               | n, calm, ssw  | 13.5              | 30.09                | 1                 | 100      | 100      | 3                     | 7.2    |
| 12-Oct | 7.50  | 2.0                 | 0                    | clr-ovc, PM rain      | 17.7               | SSW           | 7.9               | 30.02                | 4                 | 31       | 67       | 1                     | 1.5    |
| 13-Oct | 7.00  | 2.3                 | 0                    | pc                    | 9.7                | SSW           | 11.4              | 30.03                | 1                 | 100      | 92       | 3                     | 5.4    |
| 14-Oct | 6.25  | 2.2                 | 0                    | ovc-mc, AM fog        | 7.9                | se-ssw        | 11.9              | 29.84                | 4                 | 58       | 24       | 3                     | 1.6    |

Appendix C. Daily observation effort, visitor disturbance ratings, weather records, and flight summaries for the Chelan Ridge Raptor Migration Project: 2005.

Appendix C. continued

| Date   | Obs.<br>Hours | Obsrvr<br>/ Hour <sup>1</sup> | VISITOR<br>DISTURB <sup>2</sup> | Predominant<br>Weather <sup>3</sup> | Speed<br>(Kph) <sup>1</sup> | WIND<br>DIRECTION | TEMP $(^{\circ}C)^{1}$ | PRESS.<br>(IN HG) <sup>1</sup> | THERMAL<br>LIFT <sup>4</sup> | West<br>(KM) <sup>1</sup> | East<br>(KM) <sup>1</sup> | FLIGHT<br>DISTANCE <sup>5</sup> | Birds<br>/ Hour |
|--------|---------------|-------------------------------|---------------------------------|-------------------------------------|-----------------------------|-------------------|------------------------|--------------------------------|------------------------------|---------------------------|---------------------------|---------------------------------|-----------------|
| 15-Oct | 9.00          | 2.0                           | 0                               | pc-mc                               | 13.0                        | S                 | 12.5                   | 29.77                          | 2                            | 100                       | 82                        | 1                               | 1.3             |
| 16-Oct | 9.00          | 1.5                           | 0                               | pc-ovc                              | 16.0                        | SW                | 9.5                    | 30.00                          | 3                            | 100                       | 55                        | 2                               | 1.1             |
| 17-Oct | 9.00          | 2.0                           | 0                               | pc-mc                               | 26.6                        | SW                | 13.9                   | 29.87                          | 4                            | 100                       | 61                        | 2                               | 0.6             |
| 18-Oct | 7.50          | 2.3                           | 0                               | ovc-mc                              | 11.3                        | ne, s             | 10.8                   | 29.93                          | 4                            | 100                       | 47                        | 3                               | 1.2             |
| 19-Oct | 2.75          | 1.0                           | 0                               | ovc/fog                             | 12.8                        | SW                | 8.3                    | 29.80                          | 4                            | 0                         | 0                         | -                               | 0.0             |
| 20-Oct | 9.00          | 2.0                           | 0                               | pc                                  | 4.7                         | SW                | 8.5                    | 30.11                          | 2                            | 86                        | 98                        | 3                               | 2.4             |
| 21-Oct | 8.00          | 2.0                           | 0                               | pc-mc                               | 12.6                        | S                 | 10.2                   | 30.23                          | 3                            | 79                        | 36                        | 1                               | 2.8             |
| 22-Oct | 8.50          | 1.9                           | 0                               | clr                                 | 15.2                        | S-SW              | 11.3                   | 30.05                          | 3                            | 64                        | 89                        | 3                               | 2.8             |
| 23-Oct | 8.50          | 1.6                           | 0                               | mc-pc                               | 11.0                        | se-ssw            | 11.1                   | 29.97                          | 4                            | 57                        | 76                        | 3                               | 1.2             |
| 24-Oct | 8.50          | 1.5                           | 0                               | clr                                 | 9.6                         | se-ssw            | 12.1                   | 30.07                          | 2                            | 44                        | 93                        | 1                               | 0.6             |
| 25-Oct | 8.00          | 1.4                           | 0                               | clr-ovc/haze                        | 15.6                        | S-SSW             | 10.8                   | 29.83                          | 4                            | 11                        | 31                        | 2                               | 0.4             |

<sup>1</sup> Average of hourly records.

<sup>2</sup> Median hourly visitor-disturbance rating (subjective assessment by observers): 0 = none, 1 = low, 2 = moderate, 3 = high.

<sup>3</sup> Predominant sky condition during day: clr = clear (0-15% cloud cover); pc = partly cloudy (16-50% cover); mc = mostly cloudy (51-75% cover); ovc = overcast (76-100% cover); ts = thunderstorms.

<sup>4</sup> Median hourly rating concerning prevalence of lift-generating thermals, based on subjective assessments of solar intensity, wind speeds, and migrant behavior: 1 = excellent, 2 = good, 3 = fair, 4 = poor.

<sup>5</sup> Median hourly rating concerning line-of-sight distance of flight from observation site: 1 = close, detection and identification possible with naked eye; 2 = moderate, detection possible with naked eye, but binoculars needed for identification; 3 = far, binoculars needed for both detection and identification; 4 = distant, birds detected and identified only with excellent binoculars or spotting scope and by experienced observers.

|        | Obs.  |    |    |    |    |    |    |    |    |    |    |    |    | SI | PECIE | $s^1$ |    |    |    |    |    |    |    |    |    |    |    |    |       | Birds  |
|--------|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|-------|-------|----|----|----|----|----|----|----|----|----|----|----|----|-------|--------|
| DATE   | HOURS | TV | OS | NH | WK | SS | СН | NG | SA | LA | UA | BW | SW | RT | FH    | RL    | UB | GE | BE | UE | AK | ML | PR | PG | SF | LF | UF | UU | TOTAL | / Hour |
| 24-Aug | 9.00  | 0  | 0  | 1  | 0  | 4  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 5  | 0     | 0     | 1  | 0  | 0  | 0  | 4  | 0  | 1  | 0  | 0  | 0  | 0  | 2  | 19    | 2.1    |
| 25-Aug | 9.00  | 0  | 0  | 2  | 0  | 3  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0     | 0     | 0  | 0  | 0  | 0  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 13    | 1.4    |
| 26-Aug | 9.00  | 1  | 0  | 2  | 0  | 2  | 4  | 1  | 0  | 0  | 0  | 0  | 0  | 3  | 0     | 0     | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 16    | 1.8    |
| 27-Aug | 9.00  | 0  | 2  | 0  | 0  | 6  | 4  | 0  | 1  | 0  | 0  | 0  | 0  | 10 | 0     | 0     | 1  | 1  | 0  | 0  | 6  | 1  | 0  | 1  | 0  | 0  | 0  | 1  | 34    | 3.8    |
| 28-Aug | 9.17  | 2  | 0  | 2  | 0  | 19 | 3  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 30    | 3.3    |
| 29-Aug | 9.00  | 0  | 0  | 0  | 0  | 1  | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 0     | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 6     | 0.7    |
| 30-Aug | 9.17  | 0  | 0  | 1  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 5     | 0.5    |
| 31-Aug | 9.08  | 0  | 3  | 0  | 0  | 8  | 4  | 0  | 1  | 0  | 0  | 0  | 0  | 2  | 0     | 0     | 0  | 2  | 1  | 0  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 24    | 2.6    |
| 1-Sep  | 9.00  | 4  | 1  | 5  | 0  | 12 | 10 | 0  | 2  | 0  | 0  | 0  | 0  | 3  | 0     | 0     | 0  | 1  | 0  | 0  | 2  | 1  | 1  | 0  | 0  | 0  | 0  | 1  | 43    | 4.8    |
| 2-Sep  | 8.50  | 1  | 0  | 0  | 0  | 9  | 5  | 2  | 1  | 0  | 0  | 0  | 0  | 2  | 0     | 0     | 0  | 0  | 0  | 0  | 2  | 1  | 0  | 0  | 0  | 0  | 0  | 3  | 26    | 3.1    |
| 3-Sep  | 9.17  | 6  | 2  | 0  | 0  | 15 | 3  | 0  | 1  | 1  | 0  | 0  | 0  | 4  | 0     | 0     | 1  | 3  | 0  | 0  | 7  | 2  | 0  | 0  | 0  | 0  | 0  | 1  | 46    | 5.0    |
| 4-Sep  | 9.00  | 2  | 0  | 1  | 0  | 17 | 3  | 0  | 1  | 0  | 0  | 0  | 0  | 1  | 0     | 0     | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 1  | 0  | 0  | 0  | 1  | 29    | 3.2    |
| 5-Sep  | 9.00  | 4  | 2  | 3  | 0  | 5  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 1  | 0     | 0     | 0  | 3  | 0  | 0  | 1  | 2  | 0  | 0  | 0  | 0  | 0  | 2  | 25    | 2.8    |
| 6-Sep  | 7.00  | 2  | 3  | 0  | 0  | 22 | 9  | 0  | 0  | 1  | 0  | 0  | 0  | 5  | 0     | 0     | 0  | 3  | 0  | 0  | 3  | 1  | 0  | 0  | 0  | 0  | 0  | 3  | 52    | 7.4    |
| 7-Sep  | 9.00  | 2  | 1  | 8  | 0  | 50 | 18 | 0  | 3  | 0  | 0  | 3  | 0  | 8  | 0     | 0     | 1  | 3  | 0  | 0  | 4  | 3  | 1  | 0  | 0  | 0  | 0  | 1  | 106   | 11.8   |
| 8-Sep  | 9.00  | 5  | 1  | 2  | 0  | 22 | 11 | 0  | 3  | 0  | 1  | 0  | 0  | 1  | 0     | 0     | 1  | 3  | 0  | 0  | 3  | 2  | 0  | 0  | 0  | 0  | 0  | 2  | 57    | 6.3    |
| 9-Sep  | 3.75  | 1  | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 3     | 0.8    |
| 10-Sep | 2.42  | 0  | 1  | 0  | 0  | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 0  | 2  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 6     | 2.5    |
| 11-Sep | 6.83  | 0  | 0  | 0  | 0  | 1  | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 3     | 0.4    |
| 12-Sep | 7.83  | 0  | 0  | 0  | 0  | 5  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 5     | 0.6    |
| 13-Sep | 8.83  | 2  | 1  | 6  | 0  | 14 | 4  | 1  | 1  | 0  | 0  | 0  | 0  | 2  | 0     | 0     | 1  | 2  | 0  | 0  | 1  | 5  | 0  | 1  | 0  | 0  | 0  | 2  | 43    | 4.9    |
| 14-Sep | 9.00  | 7  | 0  | 2  | 0  | 68 | 11 | 2  | 3  | 0  | 1  | 2  | 1  | 6  | 0     | 0     | 2  | 2  | 0  | 0  | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 2  | 113   | 12.6   |
| 15-Sep | 9.00  | 3  | 0  | 2  | 0  | 16 | 8  | 0  | 2  | 1  | 0  | 1  | 0  | 1  | 0     | 0     | 0  | 6  | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0  | 0  | 1  | 43    | 4.8    |
| 16-Sep | 5.00  | 0  | 1  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 4     | 0.8    |
| 17-Sep | 9.00  | 4  | 1  | 10 | 0  | 23 | 15 | 0  | 0  | 1  | 0  | 0  | 0  | 6  | 0     | 0     | 1  | 2  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 4  | 68    | 7.6    |
| 18-Sep | 9.00  | 8  | 1  | 15 | 0  | 60 | 27 | 0  | 0  | 0  | 3  | 0  | 0  | 7  | 0     | 0     | 1  | 3  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 4  | 130   | 14.4   |
| 19-Sep | 9.00  | 1  | 0  | 2  | 0  | 19 | 9  | 0  | 1  | 1  | 2  | 0  | 0  | 8  | 0     | 0     | 0  | 2  | 0  | 2  | 0  | 2  | 0  | 0  | 0  | 0  | 0  | 1  | 50    | 5.6    |
| 20-Sep | 9.00  | 0  | 0  | 6  | 0  | 14 | 3  | 0  | 1  | 0  | 0  | 0  | 0  | 4  | 0     | 0     | 0  | 0  | 0  | 0  | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 32    | 3.6    |
| 21-Sep | 9.00  | 0  | 1  | 2  | 0  | 16 | 8  | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 0     | 0     | 0  | 3  | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 3  | 38    | 4.2    |
| 22-Sep | 8.00  | 1  | 0  | 3  | 0  | 11 | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 0     | 0     | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 22    | 2.8    |
| 23-Sep | 9.00  | 0  | 0  | 0  | 0  | 7  | 6  | 0  | 0  | 0  | 0  | 0  | 0  | 5  | 0     | 0     | 0  | 2  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 21    | 2.3    |

Appendix D. Daily observation effort and fall raptor migration counts by species at Chelan Ridge, WA: 2005.

Appendix D. continued

|        | OBS.   |    |    |     |    |     |     |    |    |    |    |    |    | SI  | PECIE | $\mathrm{es}^1$ |    |     |    |    |    |    |    |    |    |    |    |    |       | Birds  |
|--------|--------|----|----|-----|----|-----|-----|----|----|----|----|----|----|-----|-------|-----------------|----|-----|----|----|----|----|----|----|----|----|----|----|-------|--------|
| DATE   | HOURS  | TV | OS | NH  | WK | SS  | СН  | NG | SA | LA | UA | BW | SW | RT  | FH    | RL              | UB | GE  | BE | UE | AK | ML | PR | PG | SF | LF | UF | UU | TOTAL | / Hour |
| 24-Sep | 9.00   | 0  | 0  | 0   | 0  | 10  | 6   | 0  | 3  | 0  | 0  | 0  | 0  | 4   | 0     | 0               | 2  | 0   | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 27    | 3.0    |
| 25-Sep | 7.50   | 0  | 0  | 2   | 0  | 5   | 3   | 0  | 0  | 0  | 0  | 0  | 0  | 7   | 0     | 0               | 0  | 2   | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 20    | 2.7    |
| 26-Sep | 9.00   | 0  | 0  | 3   | 0  | 34  | 3   | 0  | 0  | 0  | 1  | 0  | 0  | 2   | 0     | 0               | 0  | 2   | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 47    | 5.2    |
| 27-Sep | 9.00   | 1  | 1  | 3   | 0  | 9   | 2   | 0  | 2  | 0  | 1  | 0  | 0  | 15  | 0     | 0               | 3  | 1   | 0  | 0  | 0  | 6  | 0  | 0  | 0  | 0  | 0  | 0  | 44    | 4.9    |
| 28-Sep | 9.00   | 0  | 0  | 6   | 0  | 28  | 4   | 0  | 0  | 0  | 0  | 0  | 0  | 2   | 0     | 0               | 0  | 0   | 0  | 0  | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 44    | 4.9    |
| 29-Sep | 7.00   | 0  | 0  | 1   | 0  | 7   | 0   | 0  | 1  | 0  | 0  | 0  | 0  | 0   | 0     | 0               | 0  | 2   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 11    | 1.6    |
| 30-Sep | 8.50   | 0  | 0  | 0   | 0  | 6   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1   | 0     | 1               | 0  | 1   | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 10    | 1.2    |
| 1-Oct  | 9.00   | 1  | 0  | 1   | 0  | 12  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 1   | 0     | 0               | 1  | 2   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 19    | 2.1    |
| 2-Oct  | 7.50   | 0  | 0  | 0   | 0  | 3   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 3   | 0     | 1               | 0  | 3   | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 12    | 1.6    |
| 3-Oct  | 0.00   | 0  | 0  | 0   | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0     | 0               | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0      |
| 4-Oct  | 8.00   | 0  | 0  | 1   | 0  | 15  | 8   | 0  | 0  | 0  | 0  | 0  | 0  | 8   | 0     | 0               | 0  | 5   | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 1  | 0  | 1  | 40    | 5.0    |
| 5-Oct  | 4.25   | 0  | 0  | 0   | 0  | 3   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1   | 0     | 0               | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 4     | 0.9    |
| 6-Oct  | 8.00   | 0  | 0  | 2   | 0  | 9   | 3   | 1  | 0  | 0  | 0  | 0  | 0  | 2   | 0     | 0               | 0  | 4   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 22    | 2.8    |
| 7-Oct  | 7.50   | 0  | 0  | 0   | 0  | 5   | 1   | 0  | 2  | 0  | 0  | 0  | 0  | 1   | 0     | 1               | 0  | 2   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 12    | 1.6    |
| 8-Oct  | 9.00   | 0  | 2  | 1   | 0  | 27  | 3   | 1  | 2  | 0  | 0  | 0  | 1  | 6   | 0     | 3               | 2  | 6   | 0  | 0  | 2  | 2  | 0  | 0  | 1  | 0  | 0  | 3  | 62    | 6.9    |
| 9-Oct  | 8.50   | 0  | 0  | 5   | 0  | 44  | 2   | 0  | 0  | 0  | 0  | 0  | 0  | 19  | 0     | 0               | 0  | 2   | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 75    | 8.8    |
| 10-Oct | 7.50   | 0  | 0  | 0   | 0  | 12  | 0   | 1  | 0  | 0  | 0  | 0  | 0  | 1   | 0     | 1               | 0  | 4   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 19    | 2.5    |
| 11-Oct | 9.00   | 0  | 0  | 3   | 0  | 13  | 6   | 0  | 7  | 1  | 0  | 0  | 0  | 19  | 0     | 0               | 3  | 11  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 65    | 7.2    |
| 12-Oct | 7.50   | 0  | 0  | 0   | 0  | 4   | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 4   | 0     | 1               | 0  | 0   | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 11    | 1.5    |
| 13-Oct | 7.00   | 0  | 1  | 1   | 0  | 3   | 4   | 2  | 4  | 0  | 0  | 0  | 0  | 15  | 0     | 0               | 0  | 5   | 0  | 0  | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 38    | 5.4    |
| 14-Oct | 6.25   | 0  | 0  | 0   | 0  | 1   | 0   | 1  | 0  | 0  | 0  | 0  | 0  | 5   | 0     | 0               | 1  | 2   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 10    | 1.6    |
| 15-Oct | 9.00   | 0  | 0  | 3   | 0  | 4   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1   | 0     | 1               | 0  | 2   | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 12    | 1.3    |
| 16-Oct | 9.00   | 0  | 0  | 2   | 0  | 2   | 0   | 0  | 1  | 0  | 0  | 0  | 0  | 0   | 0     | 2               | 0  | 3   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 10    | 1.1    |
| 17-Oct | 9.00   | 0  | 0  | 0   | 0  | 3   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0     | 1               | 0  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 5     | 0.6    |
| 18-Oct | 7.50   | 0  | 0  | 0   | 0  | 2   | 0   | 0  | 1  | 0  | 0  | 0  | 0  | 1   | 0     | 0               | 0  | 5   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 9     | 1.2    |
| 19-Oct | 2.75   | 0  | 0  | 0   | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0     | 0               | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0.0    |
| 20-Oct | 9.00   | 0  | 0  | 2   | 0  | 2   | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 8   | 0     | 6               | 1  | 0   | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 22    | 2.4    |
| 21-Oct | 8.00   | 0  | 0  | 1   | 0  | 4   | 0   | 1  | 1  | 0  | 0  | 0  | 0  | 6   | 0     | 2               | 1  | 6   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 22    | 2.8    |
| 22-Oct | 8.50   | 0  | 0  | 0   | 0  | 7   | 1   | 0  | 1  | 0  | 0  | 0  | 0  | 7   | 0     | 1               | 1  | 5   | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 24    | 2.8    |
| 23-Oct | 8.50   | 0  | 0  | 0   | 0  | 1   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1   | 0     | 1               | 1  | 6   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 10    | 1.2    |
| 24-Oct | 8.50   | 0  | 0  | 1   | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0     | 0               | 1  | 3   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 5     | 0.6    |
| 25-Oct | 8.00   | 0  | 0  | 0   | 0  | 1   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0     | 0               | 1  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 3     | 0.4    |
| Total  | 486.00 | 58 | 25 | 112 | 0  | 729 | 228 | 13 | 48 | 6  | 9  | 6  | 2  | 233 | 0     | 22              | 27 | 126 | 4  | 2  | 55 | 53 | 4  | 4  | 1  | 3  | 0  | 48 | 1818  | 3.7    |

<sup>1</sup> See Appendix B for full names associated with species codes.

|                                      | 1997   | 1998   | 1999   | 2000   | 2001   | 2002     | 2003   | 2004   | 2005   | Mean   |
|--------------------------------------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|
| Start Date                           | 5-Sep  | 27-Aug | 27-Aug | 27-Aug | 27-Aug | 25-Aug   | 23-Aug | 24-Aug | 24-Aug | 24-Aug |
| End Date                             | 11-Oct | 21-Oct | 27-Oct | 5-Nov  | 22-Oct | 25-Oct   | 26-Oct | 23-Oct | 25-Oct | 24-Oct |
| Observation days                     | 29     | 53     | 61     | 67     | 55     | 62       | 59     | 59     | 62     | 60     |
| Observation hours                    | 204.60 | 382.92 | 504.33 | 505.75 | 439.00 | 491.28   | 509.24 | 507.50 | 502.50 | 480.32 |
| Raptors / 100 hours                  | 691.1  | 620.2  | 571.2  | 481.3  | 470.4  | 522.1    | 297.1  | 286.1  | 363.4  | 451.5  |
| Species                              |        |        |        |        | RAPTOF | R COUNTS |        |        |        |        |
| Turkey Vulture                       | 4      | 29     | 21     | 26     | 14     | 46       | 30     | 25     | 58     | 31     |
| Osprey                               | 41     | 24     | 47     | 71     | 48     | 57       | 31     | 34     | 25     | 42     |
| Northern Harrier                     | 115    | 152    | 167    | 104    | 91     | 148      | 66     | 59     | 113    | 113    |
| White-tailed Kite                    |        |        |        |        |        | 0        | 1      | 0      | 0      | 0      |
| Sharp-shinned Hawk                   | 311    | 949    | 932    | 1050   | 878    | 937      | 421    | 468    | 730    | 796    |
| Cooper's Hawk                        | 150    | 247    | 232    | 198    | 198    | 234      | 136    | 220    | 228    | 212    |
| Northern Goshawk                     | 38     | 32     | 50     | 35     | 16     | 22       | 17     | 41     | 13     | 28     |
| Unknown small accipiter <sup>1</sup> |        |        |        |        | 98     | 85       | 40     | 1      | 48     | 54     |
| Unknown large accipiter <sup>1</sup> |        |        |        |        | 0      | 10       | 17     | 6      | 6      | 8      |
| Unknown accipiter                    | 182    | 221    | 248    | 98     | 0      | 49       | 36     | 10     | 9      | 84     |
| TOTAL ACCIPITERS                     | 681    | 1449   | 1462   | 1381   | 1190   | 1337     | 667    | 746    | 1034   | 1158   |
| Broad-winged Hawk                    | 2      | 7      | 5      | 5      | 6      | 9        | 3      | 2      | 6      | 5      |
| Swainson's Hawk                      | 0      | 8      | 17     | 2      | 0      | 7        | 15     | 5      | 2      | 7      |
| Red-tailed Hawk                      | 145    | 182    | 450    | 364    | 263    | 386      | 263    | 277    | 233    | 302    |
| Ferruginous Hawk                     | 0      | 0      | 0      | 1      | 0      | 0        | 0      | 0      | 0      | 0      |
| Rough-legged Hawk                    | 1      | 13     | 44     | 53     | 13     | 45       | 14     | 20     | 22     | 28     |
| Unidentified buteo                   | 75     | 58     | 148    | 97     | 83     | 82       | 39     | 15     | 29     | 69     |
| TOTAL BUTEOS                         | 223    | 268    | 664    | 522    | 365    | 529      | 334    | 319    | 292    | 412    |
| Golden Eagle                         | 105    | 55     | 141    | 174    | 105    | 135      | 142    | 130    | 130    | 127    |
| Bald Eagle                           | 2      | 2      | 7      | 15     | 2      | 8        | 1      | 2      | 4      | 5      |
| Unidentified eagle                   | 7      | 0      | 7      | 5      | 1      | 0        | 12     | 0      | 2      | 3      |
| TOTAL EAGLES                         | 114    | 57     | 155    | 194    | 108    | 143      | 155    | 132    | 136    | 135    |
| American Kestrel                     | 24     | 107    | 89     | 40     | 84     | 68       | 33     | 48     | 55     | 66     |
| Merlin                               | 17     | 55     | 36     | 26     | 36     | 38       | 21     | 39     | 53     | 38     |
| Prairie Falcon                       | 2      | 10     | 7      | 5      | 5      | 6        | 19     | 5      | 4      | 8      |
| Peregrine Falcon                     | 5      | 2      | 9      | 1      | 3      | 9        | 14     | 7      | 4      | 6      |
| Unknown small falcon <sup>1</sup>    |        |        |        |        | 6      | 4        | 6      | 5      | 1      | 4      |
| Unknown large falcon <sup>1</sup>    |        |        |        |        | 1      | 2        | 2      | 2      | 3      | 2      |
| Unknown falcon                       | 10     | 6      | 6      | 2      | 2      | 0        | 0      | 4      | 0      | 3      |
| TOTAL FALCONS                        | 58     | 180    | 147    | 74     | 137    | 127      | 95     | 110    | 120    | 124    |
| Unidentified Raptor                  | 178    | 216    | 218    | 62     | 112    | 178      | 134    | 27     | 48     | 124    |
| GRAND TOTAL                          | 1414   | 2375   | 2881   | 2434   | 2065   | 2565     | 1513   | 1452   | 1826   | 2139   |

Appendix E. Annual observation effort and fall raptor migration counts by species at Chelan Ridge, WA: 1997–2005.

<sup>1</sup> Designations used for the first time in 2001.

|        | STN.  |    |    |    |    | S  | PECIE | $s^1$ |    |    |    |    |       | CAPTURES |
|--------|-------|----|----|----|----|----|-------|-------|----|----|----|----|-------|----------|
| DATE   | HOURS | NH | SS | СН | NG | RT | RL    | GE    | AK | ML | PR | PG | TOTAL | / STN HR |
| 25-Aug | 4.10  | 0  | 1  | 1  | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 2     | 0.5      |
| 26-Aug | 8.10  | 0  | 3  | 6  | 0  | 2  | 0     | 0     | 0  | 0  | 0  | 0  | 11    | 1.4      |
| 27-Aug | 17.25 | 0  | 10 | 6  | 0  | 0  | 0     | 0     | 0  | 1  | 0  | 0  | 17    | 1.0      |
| 28-Aug | 17.00 | 0  | 9  | 4  | 0  | 1  | 0     | 0     | 0  | 0  | 0  | 0  | 14    | 0.8      |
| 29-Aug | 16.83 | 0  | 2  | 0  | 1  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 3     | 0.2      |
| 30-Aug | 14.33 | 0  | 1  | 1  | 0  | 0  | 0     | 0     | 0  | 1  | 0  | 0  | 3     | 0.2      |
| 31-Aug | 18.25 | 0  | 9  | 4  | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 13    | 0.7      |
| 1-Sep  | 18.10 | 0  | 3  | 12 | 0  | 0  | 0     | 0     | 1  | 0  | 0  | 0  | 16    | 0.9      |
| 2-Sep  | 17.66 | 0  | 6  | 5  | 0  | 0  | 0     | 0     | 0  | 1  | 0  | 0  | 12    | 0.7      |
| 3-Sep  | 8.25  | 0  | 1  | 7  | 0  | 0  | 0     | 0     | 1  | 0  | 0  | 0  | 9     | 1.1      |
| 4-Sep  | 14.00 | 0  | 13 | 4  | 0  | 0  | 0     | 0     | 0  | 1  | 0  | 0  | 18    | 1.3      |
| 5-Sep  | 17.58 | 0  | 9  | 3  | 0  | 1  | 0     | 0     | 0  | 1  | 0  | 0  | 14    | 0.8      |
| 6-Sep  | 13.50 | 0  | 13 | 5  | 0  | 0  | 0     | 0     | 0  | 1  | 0  | 0  | 19    | 1.4      |
| 7-Sep  | 18.00 | 1  | 22 | 8  | 0  | 0  | 0     | 0     | 2  | 3  | 0  | 0  | 36    | 2.0      |
| 8-Sep  | 13.03 | 0  | 6  | 2  | 0  | 2  | 0     | 0     | 1  | 1  | 0  | 1  | 13    | 1.0      |
| 9-Sep  | 0.00  |    |    |    |    |    |       |       |    |    |    |    |       |          |
| 10-Sep | 5.25  | 0  | 1  | 0  | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 1     | 0.2      |
| 11-Sep | 14.25 | 0  | 3  | 0  | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 3     | 0.2      |
| 12-Sep | 15.80 | 1  | 3  | 1  | 0  | 0  | 0     | 0     | 0  | 1  | 0  | 0  | 6     | 0.4      |
| 13-Sep | 17.83 | 2  | 13 | 4  | 0  | 0  | 0     | 0     | 0  | 4  | 0  | 0  | 23    | 1.3      |
| 14-Sep | 16.58 | 0  | 27 | 12 | 0  | 0  | 0     | 0     | 0  | 3  | 0  | 0  | 42    | 2.5      |
| 15-Sep | 17.92 | 1  | 3  | 4  | 0  | 0  | 0     | 0     | 0  | 4  | 0  | 0  | 12    | 0.7      |
| 16-Sep | 9.41  | 0  | 1  | 0  | 0  | 0  | 0     | 0     | 0  | 1  | 0  | 0  | 2     | 0.2      |
| 17-Sep | 9.25  | 1  | 10 | 1  | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 12    | 1.3      |
| 18-Sep | 18.00 | 0  | 26 | 9  | 0  | 1  | 0     | 0     | 0  | 6  | 0  | 0  | 42    | 2.3      |
| 19-Sep | 17.16 | 1  | 14 | 5  | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 20    | 1.2      |
| 20-Sep | 18.00 | 0  | 17 | 7  | 1  | 1  | 0     | 0     | 0  | 2  | 0  | 0  | 28    | 1.6      |
| 21-Sep | 18.00 | 0  | 5  | 2  | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 7     | 0.4      |
| 22-Sep | 17.66 | 0  | 12 | 2  | 0  | 0  | 0     | 0     | 0  | 1  | 0  | 0  | 15    | 0.8      |
| 23-Sep | 16.25 | 0  | 4  | 3  | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 7     | 0.4      |
| 24-Sep | 18.30 | 0  | 6  | 1  | 0  | 0  | 0     | 0     | 1  | 1  | 0  | 0  | 9     | 0.5      |
| 25-Sep | 17.50 | 1  | 8  | 2  | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 11    | 0.6      |

Appendix F. Daily capture totals of migrating raptors at Chelan Ridge, WA: 2005.

| Appendix F. | continued |
|-------------|-----------|
|-------------|-----------|

|        | STN.   |    |     |     |    | S  | PECIE | $s^1$ |    |    |    |    |       | CAPTURES |
|--------|--------|----|-----|-----|----|----|-------|-------|----|----|----|----|-------|----------|
| DATE   | HOURS  | NH | SS  | СН  | NG | RT | RL    | GE    | AK | ML | PR | PG | TOTAL | / STN HR |
| 26-Sep | 17.25  | 0  | 12  | 4   | 1  | 0  | 0     | 0     | 0  | 2  | 0  | 0  | 19    | 1.1      |
| 27-Sep | 16.33  | 2  | 12  | 1   | 0  | 0  | 0     | 0     | 0  | 3  | 0  | 0  | 18    | 1.1      |
| 28-Sep | 17.50  | 1  | 11  | 1   | 1  | 1  | 0     | 0     | 0  | 0  | 0  | 0  | 15    | 0.9      |
| 29-Sep | 13.75  | 0  | 3   | 1   | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 4     | 0.3      |
| 30-Sep | 16.75  | 0  | 5   | 1   | 0  | 0  | 0     | 0     | 0  | 1  | 0  | 0  | 7     | 0.4      |
| 1-Oct  | 16.50  | 0  | 9   | 2   | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 11    | 0.7      |
| 2-Oct  | 14.50  | 0  | 2   | 1   | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 3     | 0.2      |
| 3-Oct  | 0.00   |    |     |     |    |    |       |       |    |    |    |    |       |          |
| 4-Oct  | 4.00   | 0  | 3   | 0   | 0  | 0  | 1     | 0     | 0  | 0  | 0  | 0  | 4     | 1.0      |
| 5-Oct  | 3.00   | 0  | 0   | 0   | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 0     | 0.0      |
| 6-Oct  | 14.25  | 0  | 8   | 1   | 0  | 0  | 0     | 0     | 0  | 1  | 0  | 0  | 10    | 0.7      |
| 7-Oct  | 15.37  | 0  | 7   | 0   | 0  | 1  | 1     | 0     | 0  | 2  | 0  | 0  | 11    | 0.7      |
| 8-Oct  | 16.25  | 0  | 14  | 0   | 0  | 1  | 1     | 0     | 0  | 0  | 0  | 0  | 16    | 1.0      |
| 9-Oct  | 16.50  | 1  | 18  | 1   | 0  | 0  | 0     | 0     | 0  | 3  | 0  | 0  | 23    | 1.4      |
| 10-Oct | 15.00  | 0  | 7   | 0   | 1  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 8     | 0.5      |
| 11-Oct | 17.00  | 0  | 4   | 2   | 1  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 7     | 0.4      |
| 12-Oct | 15.50  | 0  | 4   | 1   | 0  | 0  | 2     | 1     | 0  | 0  | 0  | 0  | 8     | 0.5      |
| 13-Oct | 12.50  | 0  | 1   | 0   | 1  | 0  | 0     | 1     | 0  | 1  | 0  | 0  | 4     | 0.3      |
| 14-Oct | 12.00  | 0  | 2   | 0   | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 2     | 0.2      |
| 15-Oct | 16.75  | 0  | 0   | 0   | 1  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 1     | 0.1      |
| 16-Oct | 16.50  | 0  | 1   | 0   | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 1     | 0.1      |
| 17-Oct | 17.20  | 0  | 3   | 0   | 0  | 0  | 0     | 0     | 0  | 1  | 0  | 0  | 4     | 0.2      |
| 18-Oct | 15.55  | 0  | 0   | 0   | 1  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 1     | 0.1      |
| 19-Oct | 0.00   |    |     |     |    |    |       |       |    |    |    |    |       |          |
| 20-Oct | 15.85  | 0  | 1   | 0   | 0  | 0  | 0     | 0     | 0  | 1  | 0  | 0  | 2     | 0.1      |
| 21-Oct | 14.00  | 0  | 5   | 0   | 1  | 0  | 0     | 0     | 0  | 1  | 0  | 0  | 7     | 0.5      |
| 22-Oct | 15.25  | 0  | 2   | 0   | 1  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 3     | 0.2      |
| Total  | 828.19 | 12 | 395 | 137 | 11 | 11 | 5     | 2     | 6  | 49 | 0  | 1  | 629   | 0.8      |

<sup>1</sup> See Appendix B for full names associated with species codes.

|                                 | 1999 <sup>1</sup> | 2000 <sup>1</sup> | 2001   | 2002   | 2003     | 2004   | 2005   | MEAN   | TOTAL |
|---------------------------------|-------------------|-------------------|--------|--------|----------|--------|--------|--------|-------|
| First trapping day              | 28-Aug            | 2-Sep             | 30-Aug | 27-Aug | 23-Aug   | 25-Aug | 25-Aug |        |       |
| Last trapping day               | 16-Oct            | 14-Oct            | 17-Oct | 19-Oct | 25-Oct   | 18-Oct | 22-Oct |        |       |
| Number of stations              | 2                 | 2                 | 2      | 2      | 2        | 2      | 2      | 2      |       |
| Trapping days                   | 47                | 42                | 44     | 54     | 56       | 53     | 56     | 50     |       |
| Station hours                   | 388               | ?                 | 612.75 | 837.25 | 803.31   | 699.56 | 828.19 | 694.84 |       |
| Captures / stn. hour            | 5.7               | ?                 | 8.6    | 8.1    | 7.3      | 5.0    | 7.5    | 7.0    |       |
| SPECIES                         |                   |                   |        | Rapi   | TOR CAPT | URES   |        |        |       |
| Northern Harrier                | 4                 | 3                 | 10     | 13     | 11       | 6      | 12     | 8.4    | 59    |
| Sharp-shinned Hawk              | 139               | 125               | 341    | 459    | 394      | 237    | 389    | 298    | 2084  |
| Cooper's Hawk                   | 42                | 46                | 107    | 127    | 100      | 58     | 137    | 88     | 617   |
| Northern Goshawk                | 14                | 10                | 12     | 13     | 9        | 16     | 11     | 12     | 85    |
| Red-tailed Hawk                 | 11                | 8                 | 22     | 29     | 20       | 16     | 11     | 17     | 117   |
| Rough-legged Hawk               | 0                 | 1                 | 1      | 2      | 1        | 0      | 5      | 1.4    | 10    |
| Golden Eagle                    | 0                 | 1                 | 2      | 0      | 4        | 2      | 2      | 2      | 11    |
| American Kestrel                | 3                 | 0                 | 8      | 10     | 17       | 5      | 6      | 7      | 49    |
| Merlin                          | 6                 | 4                 | 17     | 21     | 25       | 10     | 49     | 19     | 132   |
| Prairie Falcon                  | 1                 | 1                 | 3      | 4      | 4        | 1      | 0      | 2      | 14    |
| Peregrine Falcon                | 0                 | 0                 | 2      | 0      | 4        | 1      | 1      | 1      | 8     |
| All species                     | 220               | 199               | 525    | 678    | 589      | 352    | 623    | 455    | 3186  |
| Recaptures <sup>2</sup>         | 0                 | 0                 | 0      | 0      | 0        | 0      | 0      | 0      | 0     |
| Foreign Recaptures <sup>3</sup> | 0                 | 0                 | 0      | 1      | 0        | 0      | 0      | <1     | 1     |
| Foreign Encounters <sup>4</sup> | 0                 | 1                 | 5      | 2      | 1        | 1      | 4      | 2      | 14    |

Appendix G. Annual trapping effort and capture totals by species for migrating raptors at Chelan Ridge, WA: 1999–2005.

<sup>1</sup> Data collected by the Falcon Research Group.

<sup>2</sup> Recaptures at Chelan Ridge of birds originally banded at Chelan Ridge.

<sup>3</sup> Recaptures at Chelan Ridge of birds originally banded elsewhere.

<sup>4</sup> Birds originally banded at Chelan Ridge and subsequently encountered elsewhere.