# FALL 2002 RAPTOR MIGRATION STUDIES IN THE MANZANO MOUNTAINS OF CENTRAL NEW MEXICO

Report prepared by:

## Jeff P. Smith

On-site Project Coordinator:

## John P. DeLong

Counts conducted by:

## **Carrie Hisaoka and Richard Sim**

With assistance from:

# Melissa Witte, Tim Hanks, Terry Hodap, Don Wolfe Geoff Evans, Claire Lamos

Banding conducted by:

John DeLong, Leigh Greenwood, Keith Bagnall, Zach Hurst, and Ilka Sohle

With assistance from:

Walt Lehman, Bill Ostheimer, Tracey Mader, Daren Scott, Ruth Smith, and Tuk Jacobson

On-site education by:

Melissa Witte

Project Coordinated by:

HawkWatch International Principal Investigator: Dr. Jeff P. Smith 1800 South West Temple, Suite 226, Salt Lake City, UT 84115 (801) 484-6808

February 2003

The Manzano Mountains raptor migration study in central New Mexico is an ongoing effort to monitor long-term trends in populations of raptors using the southern portion of the Rocky Mountain migratory flyway (*sensu* Hoffman et al. in press). HawkWatch International (HWI) initiated standardized counts of the autumn raptor migration through this region in 1985, and began an extensive trapping and banding program at the project site in 1990. To date, HWI observers have recorded 18 species of migratory raptors at the site, with counts typically ranging between 4,000 and 7,000 migrants per season. The 2002 season marked the 18<sup>th</sup> consecutive count and the 13<sup>th</sup> consecutive season of trapping and banding conducted at the site by HWI. This report provides a brief summary of the 2002 count and banding results. HWI will present a more in-depth review of the season's results in a comprehensive, multi-site report in summer 2003.

## **STUDY SITE**

The project site is located in the Manzano Wilderness Area of the Cibola National Forest (Manzano Ranger District) near Capilla Peak, approximately 56 km south-southeast of Interstate 40 (34°42.25' N, 106°24.67' W). The observation post is located at an elevation of 2,805 m (9,195 ft) on a northwest-southeast facing outcrop of a limestone ridge. It is reached by walking up a 1.2 km trail from the main road leading up to Capilla Peak (FS 522). During 2002, three banding stations were distributed around the observation point within 0.25–1.5 km. North station, operated every year since 1990, was located 100 m east and 50 m north of the observation point at an elevation of 2,790 m. South station, operated part to full-time most years since 1991, was located 1.4 km south of the observation point at an elevation of 2,745 m. West station, operated every year since 1991, was located 0.5 km southwest of the observation point at an elevation of 2,684 m.

## **COUNT METHODS**

Weather permitting, two official or designated observers conducted standardized daily counts of migrating raptors from a single, traditional observation site from late August through early November. Observations typically began between 0800–0900 hrs and ended near 1700 hrs Mountain Standard Time (MST). This was official observer Carrie Hisaoka's second season of counting in the Manzano Mountains and Richard Sim's first season of migration counting. Visitors also occasionally assisted with spotting migrants. Data gathering and recording followed standardized protocols used at all HWI migration sites and as outlined in prior reports for this project.

## **TRAPPING AND BANDING METHODS**

Weather permitting, the trappers operated three traditional banding stations daily from late August through late October, generally between 0900–1700 hrs MST. Capture devices included mist nets and remotely triggered bow nets. Trappers lured migrating raptors into the capture stations from camouflaged blinds using live, non-native avian lures attached to lines manipulated from the blinds. Unless already banded, all captured birds were fitted with a uniquely numbered USGS Biological Resources Division aluminum leg band. Data gathering and recording followed standardized protocols used at all HWI migration-banding sites and as outlined in prior reports for this project. All birds were released within 45 minutes from the time of capture.

## **COUNT SUMMARY**

The observers worked on 57 of 69 possible days between 27 August and 3 November (Table 1). The number of days and hours (518.50) of observation were 10% lower and 3% higher than average, respectively. The 2002 average of 2.3 observers per hour (including official and guest observers; value is mean of daily values, which are in turn means of hourly values) was 6% higher than average.

The observers recorded 5,040 migrating raptors of 18 species during the 2002 season, which is a statistically insignificant 3% below average (Table 1; and see Appendix B for daily count records). The count of 127 Peregrine Falcons was a record high for the site; otherwise, counts for all other species fell within previously documented ranges (see Appendix C for annual summaries).

The 2002 flight was composed of 58% accipiters, 19% buteos, 13% falcons, 5% vultures, 3% eagles, <1% each of Ospreys and harriers, and 1% unidentified raptors. The season featured significantly higher than average proportions of accipiters and Ospreys, and significantly lower than average proportions of vultures and harriers (Figure 1). As usual, Sharp-shinned Hawks were the most common migrant (30% of the unadjusted total count), followed by Cooper's Hawks (23%), Red-tailed Hawks (15%), American Kestrels (9%), and Turkey Vultures (5%; Table 1, Appendix C).

Peregrine Falcons and Ferruginous Hawks showed significantly earlier than average median passage dates in 2002; Ospreys, Northern Harriers, Northern Goshawks, American Kestrels, and Prairie Falcons showed later than average timing; and all other species showed average timing. Thus, no consistent patterns of variation in timing across species were apparent, nor did age and sex-specific data indicate any consistent patterns other than predominantly average timing. Likewise, the overall seasonal distribution of activity showed a typical pattern (Figure 2).

Only three species showed significantly below average counts and passage rates this season (Turkey Vulture, Northern Harrier, and American Kestrel; Table 1). Turkey Vultures and Northern Harriers, in particular, have shown a steep downward slide during the last four years, after showing strong increasing patterns through the 1990s (Figure 3). In contrast, six species showed significantly above average totals in 2002 (Cooper's Hawks, Northern Goshawks, Broad-winged Hawks, Red-tailed Hawks, Golden Eagles, Peregrine Falcons), which generally continues long-term increasing patterns for these species (e.g., see Figure 4). In particular, the record-high count of 127 Peregrine Falcons comprises only the second time in the history of the project that the peregrine count has exceeded 100 birds!

The majority of western migration data from the past five years has shown distinct downturns that we believe reflect the negative impact of the prolonged drought that has plagued much of the interior West since 1998. The Manzano trends also suggest drought effects for several species. Turkey Vultures, Ospreys, Northern Harriers, and Merlins have shown pronounced declines since the mid-1990s after generally showing previous increases (Figure 3). American Kestrels, Prairie Falcons, and Sharp-shinned, Cooper's and Red-tailed Hawks also most likely have experienced declines in the Manzanos in the last few years; however, each of these species showed a slight upward swing in 2002 and Cooper's Hawks, Red-tailed Hawks, and Prairie Falcons are still showing significant long-term increasing trends (Figure 4). Moreover, most species for which we obtained age-specific data continued to show depressed immature : adult ratios in the Manzanos in 2002, which suggests continued poor recruitment.

Across HWI's network of western migration-monitoring projects, the 2002 season featured stark contrasts within each of the three major western flyways (Pacific Coast, Intermountain, and Rocky Mountain; Hoffman et al. 2002). Within the Rocky Mountain Flyway, the average overall Manzano count contrasted with a record-low count in the Bridger Mountains, Montana. Within the adjacent Intermountain Flyway, a record-low overall count in the Goshute Mountains, Nevada contrasted with a near average count in the Grand Canyon. Thus, within these two flyways, a possible common pattern of low counts to the north but average counts to the south emerged; however, an explanation for this pattern is difficult to ascertain given that the drought has generally been more severe farther south.

On the positive side, Ferruginous Hawks have shown a strong long-term decreasing pattern in the Manzanos; however, counts of this species have increased during the past two season (Figure 4).

### **TRAPPING AND BANDING SUMMARY**

Trapping occurred on 51 of 53 days between 3 September and 25 October, with effort totaling 956.92 station hours (see Appendix D for daily trapping records). The is an average number of trapping days and 3% higher than the average hours of effort for the site (see Appendix E for annual trapping summaries).

The trappers captured 1,295 raptors of 12 species during the season (Table 2). The capture total was a significant 23% above average and the third highest ever recorded at the site (Appendix E). The totals included a Broad-winged Hawk and a remarkable three Swainson's Hawks; we had captured only one individual of each of these species previously! Both the overall capture rate of 135 birds per 100 station hours and the overall capture success of 28% of the observed, trappable raptors also were significantly above average (Table 2). The record-high count of Peregrine Falcons also translated to a record-high capture total of 13 birds. In fact, the capture totals were above average for all but three species (Red-tailed Hawk, American Kestrel, and the rare Zone-tailed Hawk), and were average or only slightly below average for those three.

Both capture rates and successes were significantly above average for seven species and no species showed significantly below-average values (Table 2). The consistently above-average capture statistics for Cooper's Hawks, Northern Goshawks, Broad-winged Hawks, Golden Eagles, and especially Peregrine Falcons undoubtedly reflect in part above-average flight volume for these species. However, for several other species, above-average capture statistics cannot be attributed to high flight volume. In fact, high capture rates and success despite average to below-average flight volume was a common theme across HWI's network of western migration-banding projects in 2002. Once again, this suggests that many of the 2002 migrants were hungrier than usual due to the drought.

#### **ENCOUNTERS WITH PREVIOUSLY BANDED BIRDS**

The 2002 capture totals included 7 recaptures of previously banded birds: 3 Cooper's Hawks originally banded in the Manzanos (2 in 1997, 1 in 1999), 3 Cooper's Hawks originally banded at HWI's nearby spring migration project in the Sandia Mountains (2 in 1993, 1 in 1998), and a hatch-year Northern Goshawk originally banded at an as yet unknown location. This raises the total number of Manzano–Sandia exchanges to 39, and the total number of Manzano recaptures to 23.

During 2002, we received reports of six foreign encounters with Manzano-banded birds. These included one immature Red-tailed Hawk banded in 2001 and found dead three months later near the San Pedro River in the southeastern corner of Arizona (491 km S). Two female Sharp-shinned Hawks banded in 2001 (1 hatch-year, 1 second-year) were recovered the following spring in central Colorado (434 and 460 km N), one dead of unknown causes and one found injured and taken to a rehabilitation facility. Three Cooper's Hawks banded between 1998 and 2000 (adult male in 1998, hatch-year female in 1999, second-year female in 2000) were recovered between February and September 2002. An adult male banded in 1998 was found dead in northwestern Colorado (430 km N) in September 2002. A hatch-year female banded in 1999 was found dead in central Colorado (468 km N) after it struck a stationary object in August 2002. A second-year female banded in 2000 was found dead in Durango, Mexico (980 km S) in February 2002. These bring the total number of foreign encounters with Manzano-banded birds to 56, excluding recaptures in the Sandias.

During the 2002 season, our trapping efforts enabled three other complimentary studies. First, we succeeded in deploying satellite transmitters on 2 Northern Goshawks, 4 Red-tailed Hawks, and 4 Golden Eagles. Initial tracking summaries and maps with information compiled through late November 2002 are now posted on our web site at www.hawkwatch.org. Second, colleague Ruth Smith continued to collect feather and blood samples from Sharp-shinned Hawks for her study of relationships between blood-borne parasites and migration ecology. Third, we collected feather samples from Northern Goshawks and Red-

tailed Hawks to contribute to two Boise State University graduate studies designed to use analysis of stable-isotope ratios to identify migrant source populations.

#### SATELLITE TELEMETRY

We succeeded in deploying satellite transmitters on 2 Northern Goshawks, 4 Red-tailed Hawks, and 4 Golden Eagles during the 2002 season. This fulfilled our objectives except for falling well short of our target of six goshawks. Although our count of goshawks in the Manzanos was well above average, goshawks of sufficient size and condition for telemetry proved to be scarce.

At the time of this writing, all four of the 2002 Manzano red-tails were still alive and wintering in Mexico. Their wintering locations include Zacatecas, Durango, Mexico state, and Chihuahua.

All four of the Manzano eagles also were still alive and well as of mid-February 2003. Their wintering locations include the Sacramento and Guadalupe mountains region along the southern New Mexico– Texas border, the Pecos River Valley of southeastern New Mexico, a broad area in southeastern New Mexico, and the western panhandle of Texas east of the Sierra Vieja. The wintering locations of our first two Manzano eagles covered a similar range of geography from western New Mexico to western Texas (temporarily in northern Mexico).

As has been the case throughout our study and again in 2002, mortality among the young goshawks we have outfitted has been consistently rapid and nearly 100% for all four sites where we have outfitted birds. One of the two 2002 Manzano goshawks, a second-year bird, initially moved a short ways east and then 10 km south of the banding site, remaining in the Manzano Mountains. Unfortunately, after only five days the transmissions ceased, which precludes further investigation into the cause of failure. The second bird survived for about six weeks. It initially spent six days traveling 115 km north into the Jemez Mountains, but then most likely died about 15 km south of the project site in the southern Manzano Mountains. We are currently working on recovering this bird but the terrain is proving to be a difficult challenge.

Complete tracking summaries and maps for all of HWI's telemetry birds can be found on our web site at www.hawkwatch.org. A comprehensive 2003 telemetry progress report also can be accessed in the publications section of the web site.

### **IDENTIFYING MIGRANT ORIGINS THROUGH STABLE ISOTOPE ANALYSES**

For the first time in 2002, HWI contributed feather samples from Red-tailed Hawks and Northern Goshawks captured at Manzanos to two Boise State University graduate student studies designed to use analyses of stable-isotope ratios to identify migrant origins. This cutting-edge technique uses known geographic patterns of variation in the distribution of heavy and light isotopes of primarily hydrogen to determine the approximate latitudinal origins of migrants (Meehan et al. 2001, Smith et al. in press). Variation in precipitation patterns contributes to distinct patterns of variation in the ratios of heavy and light hydrogen isotopes across the landscape, and these isotope signatures are incorporated in the growing feathers of young birds. Thus, feathers can be collected from juvenile migrants, the isotope ratios in the feathers determined, and then each bird's signature can be compared against the known distribution of isotope-ratios across the landscape to identify the approximate latitudinal origins of each migrant.

The resolution of the analyses is rather coarse scale, but for broad-ranging species allows researchers to determine whether migrants derive primarily from, for example, northern, central or southern segments of the species' range. This technique has already yielded valuable insight concerning the origins and migration ecology (relative passage timing of different subpopulations) of migrants sampled at HWI migration project sites in Florida (Meehan et al. 2001, Lott et al. in press) and in the Manzanos (Smith et

al. in press, DeLong 2003). Moreover, compared to complimentary satellite-telemetry studies, the stableisotope technique can be applied to any size bird. In 2002, HWI collected feathers for the red-tail and goshawk studies at all of its banding project sites in the West, and we anxiously await the results of the pending analyses.

If appropriate funding can be secured, HWI hopes to significantly expand its involvement in stableisotope research beginning in fall 2003.

#### VISITATION

More than 450 individuals visited the Manzanos project site in 2002, with visitors originating in 12 states. Aside from individuals and families, educational groups visited from three New Mexico schools, the Rio Grande Nature Center, and a teacher-training program sponsored by the New Mexico Game and Fish. On-site educator Melissa Witte reports "a wonderful learning experience" for herself and believed everyone experienced a "truly memorable season."

#### ACKNOWLEDGMENTS

Funding and logistical support for this project was provided by the USDA Forest Service, Cibola National Forest; U.S. Fish and Wildlife Service, Region 2; New Mexico Game and Fish, Share with Wildlife Program; National Fish and Wildlife Foundation; Intel Corporation; New Belgium Brewing Company; Bureau of Reclamation—Upper Colorado Region; Central New Mexico Audubon Society; and HWI members. We are also grateful for food donations provided to the crew by Wild Oats Market and Sam's Club. We also thank the following local volunteers for their assistance during the season: Art Arenholz, John and Chris Acklen, Sheila Jefferson, Vickie Bailey, Tom Stricker, Dowel Dougherty, Larry Caldwell, Jennifer Lehman, Seamus Breslin, Ken Babcock, Tim Meehan, Chadi Pfaff, Debra Cameron, Don Wolfe, Bruce Casler, Jessie Jewell, Robert Pasztor, and Zane Dohner.

#### LITERATURE CITED

- DeLong, J. P. 2003. Flammulated Owl migration project in the Manzano Mountains, New Mexico–2002 report. HawkWatch International, Salt Lake City, UT. 20 pp.
- Hoffman, S. W., J. P. Smith, and T. D. Meehan. 2002. Breeding grounds, winter ranges, and migratory routes of raptors in the Mountain West. Journal of Raptor Research 36:97–110.
- Lott, C. A., T. D. Meehan, and J. A. Heath. In press. Estimating the latitudinal origins of migratory raptors using hydrogen and sulfur stable isotopes in feathers: influence of marine prey base. Oecologia.
- Meehan, T. D., C. A. Lott, Z. D. Sharp, R. B. Smith, R. N. Rosenfield, A. C. Stewart, and R. K. Murphy. 2001. Using hydrogen isotope geochemistry to estimate the natal latitudes of immature Cooper's Hawks migrating through the Florida Keys. Condor 103:11–20.
- Smith, R. B., T. D. Meehan, and B. O. Wolf. In press. Assessing migration patterns of Sharp-shinned Hawks using stable-isotope and band-encounter analyses. Journal of Avian Biology.

|                                      | Cot                    | JNTS |          | RAPTORS                | с / <b>100</b> н | IRS <sup>1</sup> |
|--------------------------------------|------------------------|------|----------|------------------------|------------------|------------------|
| SPECIES                              | 1985–2001 <sup>2</sup> | 2002 | % CHANGE | 1985-2001 <sup>2</sup> | 2002             | % CHANGE         |
| Turkey Vulture                       | $405 \pm 128.1$        | 239  | -41      | $124.2 \pm 36.78$      | 71.3             | -43              |
| Osprey                               | $27 \pm 6.2$           | 32   | +21      | $7.8 \pm 1.62$         | 9.3              | 20               |
| Northern Harrier                     | $63 \pm 12.7$          | 33   | -47      | $12.9 \pm 2.30$        | 6.8              | -47              |
| Sharp-shinned Hawk                   | $1461 \pm 226.5$       | 1524 | +4       | $362.2 \pm 52.04$      | 382.8            | +6               |
| Cooper's Hawk                        | $958 \pm 163.0$        | 1149 | +20      | $273.8 \pm 36.42$      | 323.4            | +18              |
| Northern Goshawk                     | $16 \pm 4.7$           | 23   | +45      | $3.6 \pm 1.27$         | 5.0              | +41              |
| Unknown small accipiter <sup>3</sup> | 86                     | 188  | _        |                        |                  |                  |
| Unknown large accipiter <sup>3</sup> | 0                      | 3    | _        |                        |                  |                  |
| Unidentified accipiter               | $104 \pm 28.2$         | 11   | _        |                        |                  |                  |
| TOTAL ACCIPITERS                     | $2543 \pm 367.8$       | 2898 | +14      |                        |                  |                  |
| Broad-winged Hawk                    | $6 \pm 1.7$            | 9    | +58      | $1.7 \pm 0.47$         | 2.8              | +61              |
| Swainson's Hawk                      | $652 \pm 827.3$        | 139  | -79      | $240.4 \pm 305.61$     | 51.0             | -79              |
| Red-tailed Hawk                      | $625 \pm 86.2$         | 778  | +24      | $137.9 \pm 16.54$      | 170.8            | +24              |
| Ferruginous Hawk                     | $14 \pm 2.6$           | 14   | +3       | $2.9\pm0.59$           | 2.9              | +1               |
| Rough-legged Hawk                    | $0 \pm 0.2$            | 0    | -100     | $0.1 \pm 0.05$         | 0.0              | -100             |
| Zone-tailed Hawk                     | $1 \pm 0.4$            | 1    | +55      |                        |                  |                  |
| Unidentified buteo                   | $20 \pm 11.4$          | 32   | +60      |                        |                  |                  |
| TOTAL BUTEOS                         | $1317 \pm 836.1$       | 972  | -26      |                        |                  |                  |
| Golden Eagle                         | $119 \pm 15.1$         | 149  | +25      | $25.8 \pm 3.49$        | 31.5             | +22              |
| Bald Eagle                           | $3 \pm 1.2$            | 3    | -12      | $1.0 \pm 0.34$         | 0.8              | -17              |
| Unidentified Eagle                   | $1 \pm 0.6$            | 0    | -100     |                        |                  |                  |
| TOTAL EAGLES                         | $123 \pm 15.0$         | 152  | +23      |                        |                  |                  |
| American Kestrel                     | $575 \pm 73.4$         | 470  | -18      | $160.5 \pm 20.50$      | 129.1            | -20              |
| Merlin                               | $24 \pm 7.1$           | 22   | -9       | $6.0 \pm 1.67$         | 5.9              | -2               |
| Prairie Falcon                       | $21 \pm 6.0$           | 24   | +14      | $4.5 \pm 1.20$         | 6.1              | +33              |
| Peregrine Falcon                     | $38 \pm 14.1$          | 127  | +237     | $8.9 \pm 3.05$         | 30.6             | +242             |
| Unknown small falcon <sup>3</sup>    | 0                      | 4    | _        |                        |                  |                  |
| Unknown large falcon <sup>3</sup>    | 0                      | 15   | _        |                        |                  |                  |
| Unidentified falcon                  | $2 \pm 1.4$            | 2    | _        |                        |                  |                  |
| TOTAL FALCONS                        | $660 \pm 85.5$         | 664  | +1       |                        |                  |                  |
| Unidentified raptor                  | 50 ± 21.6              | 49   | -1       |                        |                  |                  |
| GRAND TOTAL                          | $5188 \pm 1088.7$      | 5040 | -3       |                        |                  |                  |

Table 1. Annual raptor migration counts and adjusted (truncated to standardized annual sampling periods and adjusted for incompletely identified birds) annual passage rates by species in the Manzano Mountains, NM: 1985–2001 versus 2002.

<sup>1</sup> Based on data truncated to standardized, species-specific sampling periods and adjusted for incompletely identified birds.

<sup>2</sup> Mean  $\pm$  95% CI.

<sup>3</sup> Designations used for the first time in 2001.

|                    | CAPTURE TO             | TAL  | CAPTURE RA             | ATE <sup>1</sup> | CAPTURE SUCC           | $ESS(\%)^2$ |
|--------------------|------------------------|------|------------------------|------------------|------------------------|-------------|
| SPECIES            | 1991–2001 <sup>3</sup> | 2002 | 1991–2001 <sup>3</sup> | 2002             | 1991–2001 <sup>3</sup> | 2002        |
| Northern Harrier   | 5 ± 2.5                | 6    | $0.5 \pm 0.21$         | 0.6              | 7 ± 3.5                | 18          |
| Sharp-shinned Hawk | $536 \pm 121.1$        | 635  | $54.5 \pm 7.21$        | 66.4             | $32 \pm 2.9$           | 39          |
| Cooper's Hawk      | $383\pm86.0$           | 510  | $39.3 \pm 5.11$        | 53.3             | $33 \pm 3.7$           | 41          |
| Northern Goshawk   | 6 ± 2.4                | 10   | $0.7\pm0.32$           | 1.0              | $35 \pm 13.2$          | 43          |
| Broad-winged Hawk  | $0.1 \pm 0.18$         | 1    | $0.01 \pm 0.013$       | 0.1              | $1 \pm 1.3$            | 11          |
| Swainson's Hawk    | $0.1 \pm 0.18$         | 3    | $0.01 \pm 0.017$       | 0.3              | $0 \pm 0.0$            | 2           |
| Red-tailed Hawk    | $59 \pm 14.6$          | 56   | $6.1 \pm 1.41$         | 5.9              | 8 ± 1.7                | 7           |
| Zone-tailed Hawk   | $0.1 \pm 0.18$         | 0    | $0.01 \pm 0.013$       | 0.0              | $7 \pm 14.0$           | 0           |
| Golden Eagle       | $4 \pm 0.6$            | 7    | $0.4\pm0.05$           | 0.7              | $3 \pm 0.5$            | 5           |
| American Kestrel   | $44\pm14.8$            | 37   | $4.5 \pm 1.37$         | 3.9              | $7 \pm 1.8$            | 8           |
| Merlin             | $4 \pm 2.1$            | 12   | $0.4 \pm 0.21$         | 1.3              | $12 \pm 5.3$           | 55          |
| Prairie Falcon     | $5 \pm 2.0$            | 5    | $0.5 \pm 0.17$         | 0.5              | $16 \pm 4.0$           | 19          |
| Peregrine Falcon   | 5 ± 2.3                | 13   | $0.5 \pm 0.23$         | 1.4              | 8 ± 2.6                | 9           |
| All Species        | $1050 \pm 230.0$       | 1295 | $107.4 \pm 13.45$      | 135.3            | $23 \pm 2.4$           | 28          |

Table 2. Capture totals, rates, and successes for migrating raptors in the Manzano Mountains,NM: 1991–2001 versus 2002.

<sup>1</sup> Captures / 100 station hours.

<sup>2</sup> Number of birds captured / number of birds observed. The combined-species value was calculated excluding Ospreys, Turkey Vultures, Swainson's Hawks, Rough-legged Hawks, Ferruginous Hawks, and unknown raptors from the count totals. Species-specific values were calculated after birds identified only to genus were allocated across possible species in proportion to the relative abundance of birds identified to those species.

<sup>3</sup> Mean of annual values  $\pm$  95% confidence interval.

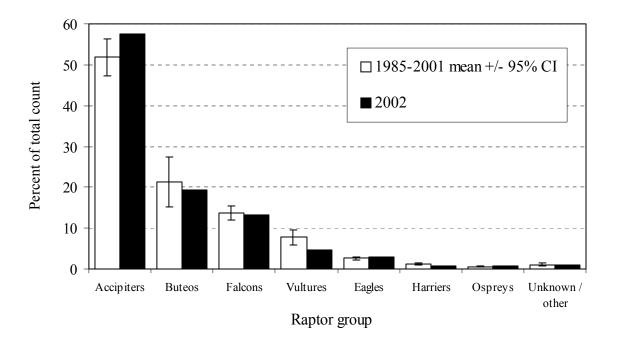



Figure 1. Fall raptor migration flight composition by major species groups in the Manzano Mountains, NM: 1985–2001 versus 2002.

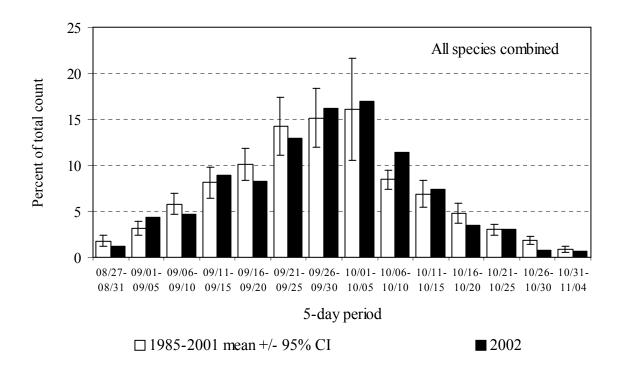



Figure 2. Combined-species passage volume by five-day periods for migrating raptors in the Manzano Mountains, NM: 1985–2001 versus 2002.

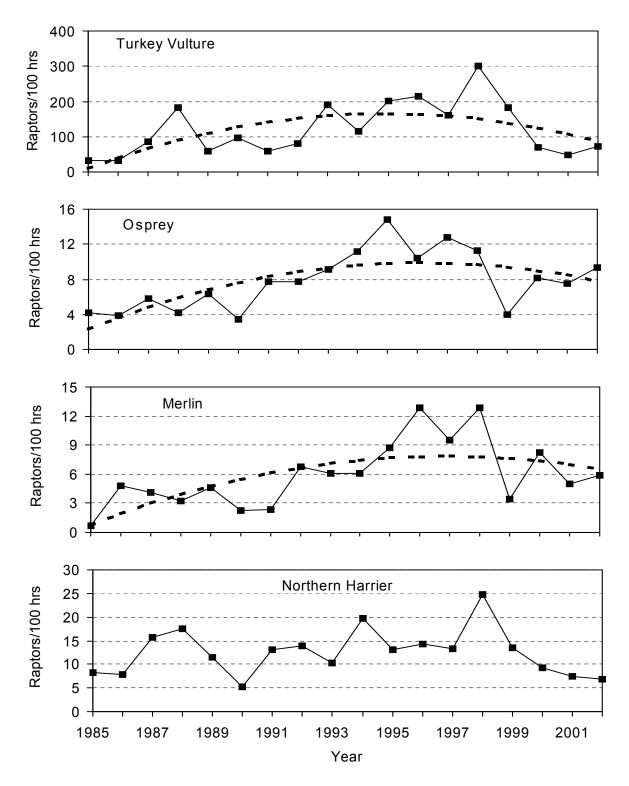



Figure 3. Fall-migration passage rates for Turkey Vultures, Ospreys, Merlins, and Northern Harriers in the Manzano Mountains, NM: 1985–2002. Dotted lines indicate significant (P < 0.10) regressions.

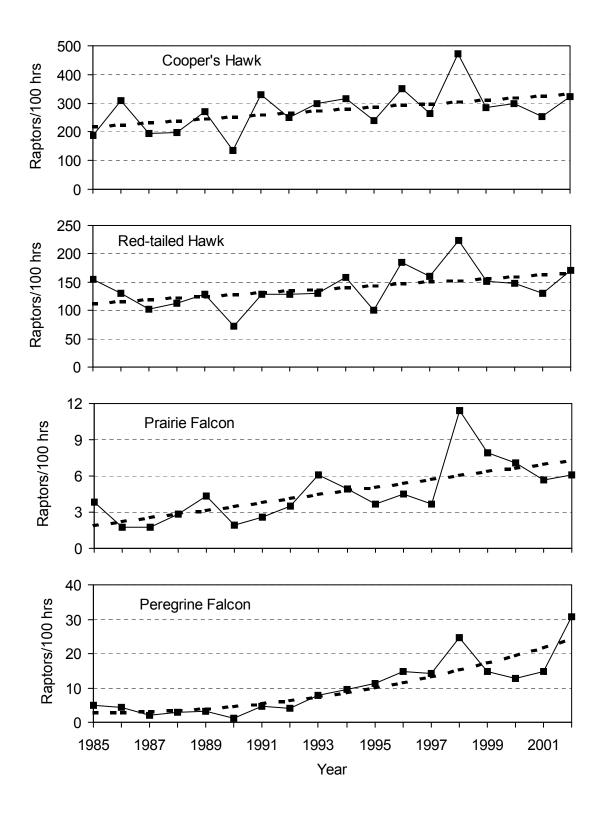



Figure 4. Fall-migration passage rates for Cooper's Hawks, Red-tailed Hawks, Prairie Falcons, and Peregrine Falcons in the Manzano Mountains, NM: 1985–2002. Dotted lines indicate significant (P < 0.10) regressions.

|                         |                              | SPECIES |                                  | 2       | COLOR              |
|-------------------------|------------------------------|---------|----------------------------------|---------|--------------------|
| COMMON NAME             | SCIENTIFIC NAME              | CODE    | $AGE^1$                          | $SEX^2$ | MORPH <sup>3</sup> |
| Turkey Vulture          | Cathartes aura               | TV      | U                                | U       | NA                 |
| Osprey                  | Pandion haliaetus            | OS      | U                                | U       | NA                 |
| Northern Harrier        | Circus cyaneus               | NH      | A I Br U                         | M F U   | NA                 |
| Sharp-shinned Hawk      | Accipiter striatus           | SS      | AIU                              | U       | NA                 |
| Cooper's Hawk           | Accipiter cooperii           | CH      | AIU                              | U       | NA                 |
| Northern Goshawk        | Accipiter gentilis           | NG      | AIU                              | U       | NA                 |
| Unknown small accipiter | A. striatus or cooperii      | SA      | U                                | U       | NA                 |
| Unknown large accipiter | A. cooperii or gentilis      | LA      | U                                | U       | NA                 |
| Unknown accipiter       | Accipiter spp.               | UA      | U                                | U       | NA                 |
| Broad-winged Hawk       | Buteo platypterus            | BW      | AIU                              | U       | DLU                |
| Swanson's Hawk          | Buteo swainsoni              | SW      | U                                | U       | DLU                |
| Red-tailed Hawk         | Buteo jamaicensis            | RT      | AIU                              | U       | DLU                |
| Ferruginous Hawk        | Buteo regalis                | FH      | AIU                              | U       | DLU                |
| Rough-legged Hawk       | Buteo lagopus                | RL      | U                                | U       | DLU                |
| Zone-tailed Hawk        | Buteo albonotus              | ZT      | AIU                              | U       | NA                 |
| Unknown buteo           | Buteo spp.                   | UB      | U                                | U       | DLU                |
| Golden Eagle            | Aquila chrysaetos            | GE      | I, S, NA, A, $U^4$               | U       | NA                 |
| Bald Eagle              | Haliaeetus leucocephalus     | BE      | I, S1, S2, NA, A, U <sup>5</sup> | U       | NA                 |
| Unknown eagle           | Aquila or Haliaeetus spp.    | UE      | U                                | U       | NA                 |
| American Kestrel        | Falco sparverius             | AK      | U                                | M F U   | NA                 |
| Merlin                  | Falco columbarius            | ML      | AM Br                            | AM U    | NA                 |
| Prairie Falcon          | Falco mexicanus              | PR      | U                                | U       | NA                 |
| Peregrine Falcon        | Falco peregrinus             | PG      | AIU                              | U       | NA                 |
| Unknown small falcon    | F. sparverius or columbarius | SF      | U                                | U       | NA                 |
| Unknown large falcon    | F. mexicanus or peregrinus   | LF      | U                                | U       | NA                 |
| Unknown falcon          | Falco spp.                   | UF      | U                                | U       | NA                 |
| Unknown raptor          | Falconiformes                | UU      | U                                | U       | NA                 |

Appendix A. Common and scientific names, species codes, and regularly applied age, sex, and color-morph classifications for all diurnal raptor species observed during fall migration in the Manzano Mountains, NM.

<sup>1</sup> Age codes: A = adult, I = immature (HY), Br = brown (adult female or immature), U = unknown age.

<sup>2</sup> Sex codes: M = male, F = female, U = unknown.

<sup>3</sup> Color morph codes: D = dark or rufous, L = light, U - unknown, NA = not applicable.

<sup>4</sup> Golden Eagle age codes: I = Immature: juvenile or first-year bird, bold white wing patch visible below, bold white in tail, no molt; S = Subadult: white wing patch variable or absent, obvious white in tail and molt or tawny bar visible on upper wing; NA = Not adult: unknown age immature/subadult; A = Adult: no white in wings or tail; U = Unknown.

<sup>5</sup> Bald Eagle age codes: I = Immature: juvenile or first-year bird, dark breast and tawny belly; S1 = young Subadult: Basic I and II plumages, light belly, upside-down triangle on back; S2 = older Subadult: Basic III plumage, head mostly white with osprey-like dark eye line and dark band on tail; NA = Not adult: unknown age immature/subadult; A = Adult: includes near adult with dark flecks in head and dark tail tip, and adult with white head and tail; U = Unknown.

|       |       |    |    |    |    |     |    |    |    |    |    |    |    | 5  | SPECIES | <sup>1</sup> |    |    |    |    |    |    |    |    |    |    |    |    | _     | Bird  |
|-------|-------|----|----|----|----|-----|----|----|----|----|----|----|----|----|---------|--------------|----|----|----|----|----|----|----|----|----|----|----|----|-------|-------|
| ATE   | HOURS | TV | OS | NH | SS | СН  | NG | SA | LA | UA | BW | SW | RT | FH | RL      | ZT           | UB | GE | BE | UE | AK | ML | PR | PG | SF | LF | UF | UU | TOTAL | / Hot |
| 7-Aug | 7.00  | 10 | 0  | 0  | 1  | 3   | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0       | 0            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 15    | 2.1   |
| 8-Aug | 6.75  | 0  | 0  | 0  | 0  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0       | 1            | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0  | 5     | 0.1   |
| 9-Aug | 7.00  | 0  | 0  | 0  | 1  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 0       | 0            | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 2  | 0  | 0  | 0  | 0  | 7     | 1.    |
| 0-Aug | 7.50  | 1  | 0  | 0  | 3  | 6   | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0       | 0            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 11    | 1.    |
| 1-Aug | 6.75  | 9  | 0  | 0  | 0  | 4   | 0  | 0  | 0  | 0  | 0  | 4  | 6  | 0  | 0       | 0            | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 25    | 3.    |
| -Sep  | 6.75  | 1  | 1  | 0  | 0  | 3   | 0  | 1  | 0  | 0  | 0  | 0  | 3  | 0  | 0       | 0            | 1  | 0  | 0  | 0  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 13    | 1.    |
| -Sep  | 7.50  | 0  | 2  | 0  | 4  | 13  | 0  | 7  | 0  | 0  | 0  | 0  | 1  | 0  | 0       | 0            | 1  | 0  | 0  | 0  | 2  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 31    | 4.    |
| -Sep  | 6.25  | 4  | 0  | 0  | 5  | 8   | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 0  | 0       | 0            | 0  | 0  | 0  | 0  | 4  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 25    | 4.    |
| -Sep  | 9.00  | 14 | 0  | 0  | 6  | 9   | 0  | 2  | 0  | 0  | 0  | 6  | 7  | 0  | 0       | 0            | 0  | 0  | 0  | 0  | 5  | 0  | 0  | 2  | 0  | 0  | 0  | 11 | 62    | 6.    |
| -Sep  | 9.00  | 38 | 0  | 0  | 5  | 11  | 0  | 0  | 0  | 0  | 0  | 4  | 10 | 0  | 0       | 0            | 0  | 1  | 0  | 0  | 12 | 0  | 0  | 5  | 0  | 1  | 0  | 1  | 88    | 9.    |
| Sep   | 9.00  | 5  | 0  | 0  | 8  | 17  | 0  | 2  | 0  | 0  | 0  | 4  | 5  | 2  | 0       | 0            | 2  | 0  | 0  | 0  | 11 | 0  | 0  | 9  | 0  | 1  | 0  | 0  | 66    | 7.    |
| -Sep  | 8.25  | 15 | 0  | 1  | 19 | 10  | 0  | 1  | 0  | 0  | 0  | 1  | 8  | 0  | 0       | 0            | 0  | 0  | 0  | 0  | 10 | 0  | 0  | 2  | 0  | 1  | 0  | 0  | 68    | 8.    |
| -Sep  | 9.50  | 0  | 0  | 0  | 34 | 9   | 0  | 4  | 0  | 0  | 0  | 0  | 2  | 0  | 0       | 0            | 0  | 1  | 0  | 0  | 1  | 0  | 0  | 2  | 0  | 1  | 0  | 1  | 55    | 5.    |
| -Sep  | 9.00  | 0  | 0  | 0  | 32 | 7   | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 0       | 0            | 0  | 1  | 0  | 0  | 1  | 0  | 0  | 2  | 0  | 0  | 0  | 1  | 48    | 5.    |
| 0-Sep | 0.00  |    |    |    |    |     |    |    |    |    |    |    |    |    |         |              |    |    |    |    |    |    |    |    |    |    |    |    |       |       |
| 1-Sep | 0.00  |    |    |    |    |     |    |    |    |    |    |    |    |    |         |              |    |    |    |    |    |    |    |    |    |    |    |    |       |       |
| 2-Sep | 4.00  | 1  | 2  | 0  | 2  | 1   | 0  | 0  | 0  | 0  | 0  | 16 | 2  | 0  | 0       | 0            | 0  | 2  | 0  | 0  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 30    | 7.    |
| 3-Sep | 8.50  | 3  | 0  | 0  | 27 | 9   | 0  | 4  | 0  | 0  | 0  | 4  | 6  | 0  | 0       | 0            | 1  | 1  | 0  | 0  | 8  | 0  | 0  | 6  | 0  | 3  | 0  | 0  | 72    | 8.    |
| 4-Sep | 9.00  | 5  | 0  | 0  | 65 | 19  | 0  | 6  | 0  | 0  | 0  | 0  | 9  | 0  | 0       | 0            | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 6  | 0  | 2  | 0  | 0  | 113   | 12    |
| 5-Sep | 8.75  | 17 | 3  | 0  | 59 | 79  | 0  | 15 | 0  | 6  | 1  | 20 | 14 | 0  | 0       | 0            | 2  | 2  | 0  | 0  | 9  | 0  | 1  | 3  | 0  | 0  | 0  | 3  | 234   | 26    |
| 6-Sep | 9.00  | 3  | 1  | 0  | 20 | 26  | 0  | 2  | 0  | 0  | 0  | 1  | 10 | 0  | 0       | 0            | 0  | 0  | 0  | 0  | 49 | 0  | 2  | 2  | 0  | 0  | 0  | 0  | 116   | 12    |
| 7-Sep | 9.00  | 2  | 1  | 1  | 28 | 31  | 0  | 7  | 0  | 0  | 0  | 0  | 11 | 2  | 0       | 0            | 0  | 0  | 0  | 0  | 30 | 0  | 4  | 8  | 0  | 0  | 1  | 1  | 127   | 14    |
| 8-Sep | 1.25  | 0  | 0  | 0  | 1  | 4   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0       | 0            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 5     | 4.    |
| 9-Sep | 7.75  | 2  | 3  | 0  | 31 | 17  | 1  | 1  | 0  | 0  | 0  | 0  | 4  | 0  | 0       | 0            | 1  | 0  | 0  | 0  | 2  | 1  | 0  | 0  | 0  | 1  | 0  | 1  | 65    | 8.    |
| 0-Sep | 9.25  | 8  | 0  | 0  | 35 | 28  | 0  | 2  | 0  | 0  | 0  | 1  | 12 | 0  | 0       | 0            | 0  | 0  | 0  | 0  | 15 | 0  | 1  | 2  | 0  | 0  | 0  | 0  | 104   | 11.   |
| 1-Sep | 9.25  | 9  | 0  | 0  | 35 | 33  | 0  | 1  | 0  | 0  | 0  | 51 | 12 | 0  | 0       | 0            | 1  | 0  | 0  | 0  | 11 | 1  | 0  | 8  | 0  | 0  | 0  | 2  | 164   | 17    |
| 2-Sep | 9.00  | 28 | 1  | 0  | 38 | 102 | 0  | 7  | 1  | 1  | 1  | 2  | 29 | 1  | 0       | 0            | 0  | 1  | 0  | 0  | 6  | 0  | 2  | 1  | 0  | 0  | 0  | 3  | 224   | 24    |
| 3-Sep | 9.00  | 0  | 0  | 0  | 13 | 30  | 0  | 0  | 0  | 0  | 0  | 0  | 15 | 1  | 0       | 0            | 2  | 0  | 0  | 0  | 9  | 0  | 0  | 7  | 1  | 0  | 0  | 0  | 78    | 8.    |
| 4-Sep | 9.25  | 9  | 0  | 1  | 32 | 33  | 0  | 2  | 0  | 0  | 0  | 1  | 9  | 1  | 0       | 0            | 0  | 2  | 0  | 0  | 6  | 0  | 0  | 3  | 0  | 1  | 0  | 0  | 100   | 10    |
| 5-Sep | 9.25  | 0  | 0  | 0  | 31 | 29  | 0  | 1  | 0  | 0  | 0  | 0  | 10 | 0  | 0       | 0            | 0  | 1  | 0  | 0  | 9  | 0  | 0  | 3  | 0  | 0  | 0  | 0  | 84    | 9.    |
| 6-Sep | 9.00  | 1  | 2  | 4  | 46 | 37  | 0  | 4  | 0  | 0  | 0  | 2  | 15 | 0  | 0       | 0            | 0  | 1  | 0  | 0  | 42 | 0  | 0  | 5  | 0  | 1  | 0  | 2  | 162   | 18    |
| 7-Sep | 9.25  | 0  | 2  | 0  | 75 | 54  | 0  | 8  | 0  | 0  | 0  | 0  | 11 | 0  | 0       | 0            | 1  | 1  | 0  | 0  | 36 | 2  | 0  | 2  | 0  | 0  | 0  | 0  | 192   | 20    |
| 8-Sep | 9.00  | 2  | 1  | 1  | 59 | 25  | 1  | 3  | 0  | 0  | 2  | 0  | 7  | 0  | 0       | 0            | 0  | 1  | 0  | 0  | 2  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 105   | 11    |
| 9-Sep | 9.75  | 16 | 2  | 1  | 47 | 33  | 0  | 4  | 0  | 0  | 0  | 0  | 17 | 0  | 0       | 0            | 0  | 2  | 0  | 0  | 9  | 0  | 0  | 8  | 0  | 1  | 0  | 1  | 141   | 14    |
| 0-Sep | 9.25  | 5  | 0  | 0  | 63 | 54  | 1  | 9  | 0  | 0  | 0  | 9  | 23 | 0  | 0       | 0            | 1  | 5  | 0  | 0  | 36 | 0  | 0  | 4  | 0  | 0  | 0  | 4  | 214   | 23    |
| -Oct  | 9.25  | 0  | 1  | 1  | 73 | 71  | 0  | 18 | 0  | 0  | 0  | 0  | 32 | 0  | 0       | 0            | 0  | 1  | 0  | 0  | 4  | 1  | 0  | 3  | 0  | 0  | 0  | 2  | 207   | 22    |
| -Oct  | 9.50  | 3  | 5  | 0  | 60 | 47  | 0  | 13 | 0  | 0  | 4  | 2  | 56 | 0  | 0       | 0            | 0  | 1  | 0  | 0  | 18 | 0  | 2  | 5  | 0  | 1  | 0  | 2  | 219   | 23    |
| Oct   | 8.75  | 3  | 1  | 0  | 52 | 34  | 0  | 3  | 0  | 0  | 0  | 3  | 24 | 0  | 0       | 0            | 0  | 0  | 0  | 0  | 33 | 0  | 0  | 5  | 1  | 1  | 0  | 1  | 161   | 18    |
| -Oct  | 9.50  | 0  | 1  | 2  | 36 | 35  | 0  | 2  | 1  | 0  | 0  | 0  | 9  | 0  | 0       | 0            | 2  | 3  | 0  | 0  | 6  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 99    | 10    |
| -Oct  | 8.75  | 0  | 0  | 0  | 61 | 44  | 0  | 14 | 0  | 0  | 0  | 4  | 30 | 0  | 0       | 0            | 1  | 2  | 0  | 0  | 3  | 1  | 0  | 6  | 0  | 0  | 0  | 0  | 166   | 19    |
| -Oct  | 9.25  | 16 | 1  | 1  | 51 | 66  | 0  | 19 | 0  | 2  | 0  | 2  | 28 | 1  | 0       | 0            | 4  | 2  | 0  | 0  | 7  | 0  | 0  | 0  | 0  | 0  | 0  | 6  | 206   | 22    |

Appendix B. Daily observation effort and fall raptor migration counts by species in the Manzano Mountains, NM: 2002.

| Appendix B. | continued |
|-------------|-----------|

|       |        |     |    |    |      |      |    |     |    |    |    |     |     | 5  | SPECIES | $s^1$ |    |     |    |    |     |    |    |     |    |    |    |    | _     | Bird  |
|-------|--------|-----|----|----|------|------|----|-----|----|----|----|-----|-----|----|---------|-------|----|-----|----|----|-----|----|----|-----|----|----|----|----|-------|-------|
| ATE   | Hours  | TV  | OS | NH | SS   | СН   | NG | SA  | LA | UA | BW | SW  | RT  | FH | RL      | ZT    | UB | GE  | BE | UE | AK  | ML | PR | PG  | SF | LF | UF | UU | TOTAL | / Hou |
| -Oct  | 9.25   | 6   | 0  | 2  | 31   | 17   | 1  | 6   | 1  | 0  | 0  | 0   | 24  | 1  | 0       | 0     | 4  | 3   | 0  | 0  | 11  | 1  | 0  | 0   | 0  | 0  | 0  | 0  | 108   | 11.7  |
| -Oct  | 9.25   | 0   | 0  | 1  | 31   | 14   | 0  | 1   | 0  | 0  | 0  | 1   | 24  | 1  | 0       | 0     | 0  | 2   | 0  | 0  | 21  | 1  | 0  | 1   | 0  | 0  | 0  | 1  | 99    | 10.7  |
| -Oct  | 9.50   | 0   | 0  | 0  | 25   | 7    | 0  | 2   | 0  | 0  | 0  | 0   | 24  | 0  | 0       | 0     | 0  | 8   | 0  | 0  | 12  | 0  | 0  | 0   | 0  | 0  | 0  | 1  | 79    | 8.3   |
| 0-Oct | 9.25   | 0   | 1  | 2  | 24   | 11   | 0  | 0   | 0  | 0  | 0  | 0   | 16  | 0  | 0       | 0     | 3  | 13  | 1  | 0  | 7   | 1  | 0  | 2   | 0  | 0  | 0  | 0  | 81    | 8.8   |
| 1-Oct | 9.25   | 1   | 0  | 1  | 34   | 9    | 0  | 3   | 0  | 0  | 0  | 0   | 17  | 0  | 0       | 0     | 0  | 8   | 0  | 0  | 7   | 2  | 1  | 0   | 0  | 0  | 0  | 2  | 85    | 9.2   |
| 2-Oct | 8.75   | 0   | 1  | 0  | 15   | 7    | 1  | 4   | 0  | 0  | 0  | 0   | 31  | 1  | 0       | 0     | 2  | 1   | 0  | 0  | 0   | 0  | 0  | 1   | 0  | 0  | 0  | 1  | 65    | 7.4   |
| 3-Oct | 8.25   | 2   | 0  | 1  | 23   | 10   | 2  | 6   | 0  | 0  | 0  | 0   | 29  | 0  | 0       | 0     | 0  | 12  | 0  | 0  | 1   | 1  | 0  | 1   | 0  | 0  | 0  | 1  | 89    | 10.8  |
| 4-Oct | 9.00   | 0   | 0  | 3  | 16   | 1    | 3  | 1   | 0  | 1  | 0  | 0   | 6   | 0  | 0       | 0     | 0  | 8   | 0  | 0  | 3   | 0  | 1  | 2   | 0  | 0  | 0  | 0  | 45    | 5.0   |
| 5-Oct | 8.75   | 0   | 0  | 1  | 44   | 9    | 0  | 0   | 0  | 0  | 0  | 0   | 17  | 0  | 0       | 0     | 1  | 10  | 0  | 0  | 2   | 1  | 0  | 1   | 0  | 0  | 0  | 0  | 86    | 9.8   |
| 6-Oct | 9.00   | 0   | 0  | 1  | 14   | 3    | 1  | 0   | 0  | 0  | 0  | 0   | 12  | 0  | 0       | 0     | 0  | 8   | 0  | 0  | 1   | 1  | 3  | 1   | 2  | 0  | 0  | 0  | 47    | 5.2   |
| 7-Oct | 9.00   | 0   | 0  | 0  | 10   | 2    | 1  | 0   | 0  | 0  | 0  | 0   | 6   | 0  | 0       | 0     | 0  | 2   | 0  | 0  | 0   | 1  | 1  | 0   | 0  | 0  | 1  | 1  | 25    | 2.8   |
| 8-Oct | 4.25   | 0   | 0  | 0  | 3    | 0    | 0  | 0   | 0  | 0  | 0  | 0   | 13  | 0  | 0       | 0     | 0  | 2   | 0  | 0  | 0   | 0  | 1  | 0   | 0  | 0  | 0  | 0  | 19    | 4.5   |
| 9-Oct | 8.25   | 0   | 0  | 2  | 10   | 7    | 3  | 3   | 0  | 1  | 0  | 0   | 11  | 0  | 0       | 0     | 1  | 0   | 0  | 0  | 1   | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 39    | 4.7   |
| 0-Oct | 9.00   | 0   | 0  | 1  | 12   | 3    | 0  | 0   | 0  | 0  | 0  | 0   | 18  | 0  | 0       | 0     | 0  | 8   | 0  | 0  | 0   | 2  | 2  | 0   | 0  | 0  | 0  | 0  | 46    | 5.1   |
| 1-Oct | 8.75   | 0   | 0  | 0  | 20   | 2    | 2  | 0   | 0  | 0  | 0  | 0   | 18  | 1  | 0       | 0     | 0  | 4   | 2  | 0  | 0   | 2  | 1  | 0   | 0  | 0  | 0  | 0  | 52    | 5.9   |
| 2-Oct | 8.00   | 0   | 0  | 1  | 19   | 0    | 2  | 0   | 0  | 0  | 0  | 0   | 16  | 0  | 0       | 0     | 0  | 2   | 0  | 0  | 0   | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 40    | 5.0   |
| 3-Oct | 6.25   | 0   | 0  | 0  | 8    | 1    | 3  | 0   | 0  | 0  | 0  | 0   | 5   | 0  | 0       | 0     | 0  | 4   | 0  | 0  | 0   | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 21    | 3.4   |
| 4-Oct | 3.50   | 0   | 0  | 0  | 0    | 0    | 0  | 0   | 0  | 0  | 0  | 0   | 3   | 0  | 0       | 0     | 0  | 4   | 0  | 0  | 0   | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 7     | 2.0   |
| 5-Oct | 8.00   | 0   | 0  | 0  | 14   | 1    | 0  | 0   | 0  | 0  | 0  | 0   | 12  | 0  | 0       | 0     | 0  | 4   | 0  | 0  | 0   | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 31    | 3.9   |
| 6-Oct | 0.00   |     |    |    |      |      |    |     |    |    |    |     |     |    |         |       |    |     |    |    |     |    |    |     |    |    |    |    |       |       |
| 7-Oct | 4.00   | 0   | 0  | 0  | 2    | 0    | 1  | 0   | 0  | 0  | 0  | 0   | 6   | 0  | 0       | 0     | 0  | 0   | 0  | 0  | 0   | 1  | 0  | 0   | 0  | 0  | 0  | 0  | 10    | 2.5   |
| 8-Oct | 0.00   |     |    |    |      |      |    |     |    |    |    |     |     |    |         |       |    |     |    |    |     |    |    |     |    |    |    |    |       |       |
| 9-Oct | 7.00   | 0   | 0  | 4  | 1    | 1    | 0  | 0   | 0  | 0  | 0  | 0   | 9   | 1  | 0       | 0     | 0  | 0   | 0  | 0  | 0   | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 16    | 2.3   |
| 0-Oct | 7.00   | 0   | 0  | 0  | 3    | 0    | 0  | 0   | 0  | 0  | 0  | 0   | 4   | 0  | 0       | 0     | 0  | 2   | 0  | 0  | 1   | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 10    | 1.4   |
| 1-Oct | 7.50   | 0   | 0  | 0  | 6    | 0    | 0  | 0   | 0  | 0  | 0  | 0   | 6   | 0  | 0       | 0     | 0  | 2   | 0  | 0  | 0   | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 14    | 1.9   |
| -Nov  | 5.00   | 0   | 0  | 0  | 0    | 0    | 0  | 0   | 0  | 0  | 0  | 0   | 1   | 0  | 0       | 0     | 0  | 2   | 0  | 0  | 0   | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 3     | 0.6   |
| -Nov  | 3.25   | 0   | 0  | 0  | 1    | 1    | 0  | 0   | 0  | 0  | 0  | 0   | 4   | 0  | 0       | 0     | 0  | 4   | 0  | 0  | 0   | 1  | 0  | 0   | 0  | 0  | 0  | 0  | 11    | 3.4   |
| -Nov  | 6.75   | 0   | 0  | 0  | 0    | 0    | 0  | 0   | 0  | 0  | 0  | 0   | 1   | 0  | 0       | 0     | 0  | 4   | 0  | 0  | 0   | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 5     | 0.7   |
| -Nov  | 0.00   |     |    |    |      |      |    |     |    |    |    |     |     |    |         |       |    |     |    |    |     |    |    |     |    |    |    |    |       |       |
| -Nov  | 0.00   |     |    |    |      |      |    |     |    |    |    |     |     |    |         |       |    |     |    |    |     |    |    |     |    |    |    |    |       |       |
| otal  | 518.50 | 239 | 32 | 33 | 1524 | 1149 | 23 | 188 | 3  | 11 | 9  | 139 | 778 | 14 | 0       | 1     | 32 | 149 | 3  | 0  | 470 | 22 | 24 | 127 | 4  | 15 | 2  | 49 | 5040  | 9.7   |

<sup>1</sup> See Appendix A for explanation of species codes.

|                                      | 1985   | 1986   | 1987   | 1988   | 1989   | 1990   | 1991   | 1992   | 1993   | 1994     | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   | 2001   | 2002   | Mean   |
|--------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Start date                           | 6-Sep  | 23-Aug | 25-Aug | 30-Aug | 28-Aug | 27-Aug | 27-Aug | 25-Aug | 25-Aug | 25-Aug   | 27-Aug | 26-Aug |
| End date                             | 2-Nov  | 31-Oct | 4-Nov  | 31-Oct | 31-Oct | 31-Oct | 5-Nov  | 5-Nov  | 5-Nov  | 2-Nov    | 8-Nov  | 5-Nov  | 5-Nov  | 5-Nov  | 5-Nov  | 2-Nov  | 4-Nov  | 3-Nov  | 2-Nov  |
| Days of observation                  | 50     | 63     | 65     | 60     | 63     | 62     | 67     | 70     | 68     | 66       | 70     | 59     | 68     | 65     | 70     | 57     | 68     | 57     | 63     |
| Hours of observation                 | 343.33 | 464.50 | 517.92 | 453.08 | 489.75 | 510.75 | 524.58 | 537.25 | 489.67 | 508.75   | 560.00 | 461.67 | 565.08 | 559.58 | 553.77 | 434.33 | 545.47 | 518.50 | 502.11 |
| Raptors / 100 hours                  | 843.2  | 863.9  | 758.6  | 772.3  | 955.4  | 494.6  | 825.6  | 946.3  | 2429.2 | 966.5    | 832.9  | 1545.9 | 1044.8 | 1594.2 | 873.1  | 991.6  | 855.8  | 972.0  | 1031.4 |
| SPECIES                              |        |        |        |        |        |        |        |        | R      | APTOR CO | UNTS   |        |        |        |        |        |        |        |        |
| Turkey Vulture                       | 74     | 118    | 283    | 466    | 178    | 295    | 176    | 268    | 601    | 430      | 636    | 640    | 563    | 1116   | 637    | 241    | 164    | 239    | 396    |
| Osprey                               | 10     | 14     | 19     | 13     | 22     | 12     | 24     | 26     | 31     | 38       | 53     | 33     | 47     | 44     | 14     | 25     | 26     | 32     | 27     |
| Northern Harrier                     | 28     | 36     | 78     | 78     | 59     | 27     | 66     | 69     | 48     | 97       | 72     | 64     | 69     | 133    | 69     | 38     | 37     | 33     | 61     |
| Sharp-shinned Hawk                   | 956    | 1300   | 1622   | 1118   | 1834   | 688    | 1080   | 1540   | 1193   | 1415     | 1519   | 2174   | 1872   | 2585   | 1212   | 1698   | 1032   | 1524   | 1465   |
| Cooper's Hawk                        | 531    | 881    | 679    | 604    | 929    | 471    | 1105   | 961    | 944    | 1054     | 907    | 1205   | 1018   | 2025   | 1069   | 984    | 913    | 1149   | 968    |
| Northern Goshawk                     | 21     | 20     | 7      | 6      | 14     | 3      | 8      | 16     | 27     | 30       | 11     | 9      | 9      | 19     | 14     | 42     | 13     | 23     | 16     |
| Unknown small accipiter <sup>1</sup> | -      | -      | -      | -      | -      | -      | -      | -      | -      | -        | -      | -      | -      | -      | -      | -      | 86     | 188    | 137    |
| Unknown large accipiter <sup>1</sup> | -      | -      | -      | -      | -      | -      | -      | -      | -      | -        | -      | -      | -      | -      | -      | -      | 0      | 3      | 2      |
| Unknown accipiter                    | 78     | 104    | 119    | 111    | 121    | 120    | 156    | 117    | 266    | 118      | 44     | 147    | 76     | 107    | 51     | 29     | 0      | 11     | 99     |
| TOTAL ACCIPITERS                     | 1586   | 2305   | 2427   | 1839   | 2898   | 1282   | 2349   | 2634   | 2430   | 2617     | 2481   | 3535   | 2975   | 4736   | 2346   | 2753   | 2044   | 2898   | 2563   |
| Broad-winged Hawk                    | 2      | 2      | 7      | 10     | 5      | 2      | 5      | 5      | 1      | 7        | 7      | 4      | 5      | 14     | 12     | 3      | 6      | 9      | 6      |
| Swainson's Hawk                      | 27     | 33     | 44     | 3      | 16     | 9      | 58     | 344    | 7301   | 67       | 32     | 867    | 679    | 572    | 194    | 19     | 815    | 139    | 623    |
| Red-tailed Hawk                      | 513    | 527    | 457    | 486    | 604    | 329    | 577    | 667    | 566    | 707      | 519    | 771    | 803    | 1151   | 733    | 591    | 632    | 778    | 634    |
| Ferruginous Hawk                     | 14     | 15     | 17     | 20     | 16     | 13     | 19     | 25     | 17     | 13       | 13     | 4      | 13     | 10     | 8      | 3      | 10     | 14     | 14     |
| Rough-legged Hawk                    | 0      | 0      | 0      | 1      | 1      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 1      | 1      | 0      | 1      | 0      | 0      |
| Zone-tailed Hawk                     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 2      | 0      | 1        | 1      | 0      | 1      | 2      | 0      | 3      | 1      | 1      | 1      |
| Unknown buteo                        | 21     | 12     | 11     | 16     | 4      | 19     | 30     | 11     | 31     | 22       | 9      | 11     | 3      | 28     | 5      | 2      | 106    | 32     | 21     |
| TOTAL BUTEOS                         | 577    | 589    | 536    | 536    | 646    | 372    | 689    | 1054   | 7916   | 817      | 581    | 1657   | 1504   | 1778   | 953    | 621    | 1571   | 973    | 1298   |
| Golden Eagle                         | 133    | 123    | 86     | 67     | 85     | 52     | 124    | 119    | 120    | 172      | 136    | 151    | 145    | 115    | 159    | 115    | 128    | 149    | 121    |
| Bald Eagle                           | 2      | 0      | 1      | 1      | 3      | 4      | 7      | 4      | 7      | 9        | 4      | 0      | 3      | 4      | 3      | 5      | 1      | 3      | 3      |
| Unknown Eagle                        | 0      | 0      | 0      | 4      | 0      | 4      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 1      |
| TOTAL EAGLES                         | 135    | 123    | 87     | 72     | 88     | 60     | 131    | 123    | 127    | 181      | 140    | 151    | 148    | 119    | 162    | 121    | 129    | 152    | 125    |
| American Kestrel                     | 421    | 755    | 426    | 385    | 677    | 409    | 728    | 704    | 520    | 582      | 584    | 905    | 455    | 742    | 525    | 397    | 560    | 470    | 569    |
| Merlin                               | 2      | 16     | 17     | 12     | 18     | 9      | 10     | 28     | 24     | 24       | 42     | 48     | 42     | 56     | 14     | 27     | 21     | 22     | 24     |
| Prairie Falcon                       | 13     | 7      | 8      | 12     | 19     | 9      | 14     | 17     | 27     | 22       | 18     | 19     | 19     | 58     | 38     | 30     | 28     | 24     | 21     |
| Peregrine Falcon                     | 14     | 15     | 7      | 10     | 15     | 5      | 21     | 18     | 31     | 37       | 49     | 60     | 67     | 116    | 64     | 49     | 63     | 127    | 43     |
| Unknown small falcon <sup>1</sup>    | -      | -      | -      | -      | -      | -      | -      | -      | -      | -        | -      | -      | -      | -      | -      | -      | 0      | 4      | 2      |
| Unknown large falcon <sup>1</sup>    | -      | -      | -      | -      | -      | -      | -      | -      | -      | -        | -      | -      | -      | -      | -      | -      | 0      | 15     | 8      |
| Unknown falcon                       | 4      | 0      | 1      | 0      | 3      | 5      | 3      | 1      | 0      | 1        | 0      | 1      | 0      | 12     | 2      | 1      | 5      | 2      | 2      |
| TOTAL FALCONS                        | 454    | 793    | 459    | 419    | 732    | 437    | 776    | 768    | 602    | 666      | 693    | 1033   | 583    | 984    | 643    | 504    | 677    | 664    | 660    |
| Unknown raptor                       | 31     | 35     | 40     | 76     | 56     | 41     | 120    | 142    | 140    | 71       | 8      | 24     | 15     | 11     | 11     | 4      | 20     | 49     | 50     |
| TOTAL                                | 2895   | 4013   | 3929   | 3499   | 4679   | 2526   | 4331   | 5084   | 11895  | 4917     | 4664   | 7137   | 5904   | 8921   | 4835   | 4307   | 4668   | 5040   | 5180   |

Appendix C. Annual observation effort and fall raptor migration counts by species (unadjusted data) in the Manzano Mountains, NM: 1985–2002.

<sup>1</sup> New designations used for the first time in 2001.

|        | STN.   |        |         |        |        |        |        | SPECIES | 1      |        |        |    |        |        | _     | CAPTURES |
|--------|--------|--------|---------|--------|--------|--------|--------|---------|--------|--------|--------|----|--------|--------|-------|----------|
| DATE   | Hours  | NH     | SS      | СН     | NG     | BW     | SW     | RT      | ZT     | GE     | AK     | ML | PR     | PG     | TOTAL | / STN HR |
| 3-Sep  | 3.17   | 0      | 2       | 1      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0  | 0      | 0      | 3     | 0.9      |
| 4-Sep  | 14.50  | 0      | 1       | 3      | 0      | 0      | 0      | 1       | 0      | 0      | 1      | 0  | 0      | 0      | 6     | 0.4      |
| 5-Sep  | 13.75  | 0      | 1       | 5      | 0      | 0      | 1      | 0       | 0      | 2      | 1      | 0  | 0      | 0      | 10    | 0.7      |
| 6-Sep  | 14.75  | 0      | 3       | 5      | 0      | 0      | 0      | 1       | 0      | 0      | 1      | 0  | 0      | 1      | 11    | 0.7      |
| 7-Sep  | 15.00  | 0      | 11      | 6      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0  | 0      | 0      | 17    | 1.1      |
| 8-Sep  | 20.83  | 0      | 14      | 2      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0  | 0      | 0      | 16    | 0.8      |
| 9-Sep  | 23.42  | 0      | 25      | 3      | 0      | 0      | 0      | 0       | 0      | 0      | 1      | 0  | 0      | 0      | 29    | 1.2      |
| 10-Sep | 0.00   |        |         |        |        |        |        |         |        |        |        |    |        |        |       |          |
| 11-Sep | 0.00   |        |         |        |        |        |        |         |        |        |        |    |        |        |       |          |
| 12-Sep | 6.25   | 0      | 2       | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0  | 0      | 0      | 2     | 0.3      |
| 13-Sep | 22.00  | 0      | 27      | 5      | 0      | 0      | 0      | 1       | 0      | 0      | 4      | 0  | 0      | 0      | 37    | 1.7      |
| 14-Sep | 22.08  | 0      | 52      | 11     | 0      | 0      | 0      | 1       | 0      | 0      | 0      | 0  | 0      | 0      | 64    | 2.9      |
| 15-Sep | 17.75  | 0      | 14      | 27     | 0      | 0      | 0      | 1       | 0      | 0      | 0      | 0  | 1      | 0      | 43    | 2.4      |
| 16-Sep | 24.50  | 0      | 7       | 17     | 0      | 0      | 0      | 1       | 0      | 0      | 6      | 0  | 0      | 0      | 31    | 1.3      |
| 17-Sep | 24.67  | 0      | 4       | 19     | 0      | 0      | 0      | 2       | 0      | 0      | 1      | 0  | 0      | 3      | 29    | 1.2      |
| 18-Sep | 2.25   | 0      | 0       | 1      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0  | 0      | 0      | 1     | 0.4      |
| 19-Sep | 18.17  | 0      | 20      | 4      | 0      | 0      | 0      | 1       | 0      | 0      | 0      | 1  | 0      | 0      | 26    | 1.4      |
| 20-Sep | 8.50   | 0      | 19      | 15     | 0      | 0      | 0      | 2       | 0      | 0      | 3      | 0  | 0      | 0      | 39    | 4.6      |
| 21-Sep | 24.50  | 0      | 6       | 15     | 0      | 0      | 0      | 1       | 0      | 0      | 0      | 1  | 1      | 1      | 25    | 1.0      |
| 22-Sep | 16.75  | 0      | 21      | 38     | 0      | 1      | 0      | 2       | 0      | 0      | 0      | 0  | 2      | 0      | 64    | 3.8      |
| 23-Sep | 19.75  | 0      | 7       | 15     | 0      | 0      | 0      | 0       | 0      | 0      | 2      | 0  | 0      | 1      | 25    | 1.3      |
| 24-Sep | 25.08  | 0      | 19      | 15     | 0      | 0      | 0      | 0       | 0      | 0      | 2      | 0  | 0      | 1      | 37    | 1.5      |
| 25-Sep | 24.75  | 0      | 17      | 24     | 0      | 0      | 0      | 2       | 0      | 0      | 2      | 0  | 0      | 1      | 46    | 1.9      |
| 26-Sep | 24.08  | 0      | 22      | 21     | 0      | 0      | 0      | 2       | 0      | 0      | 2      | 0  | 0      | 1      | 48    | 2.0      |
| 27-Sep | 25.50  | 0      | 36      | 32     | 0      | 0      | 0      | 0       | 0      | 0      | 1      | 0  | 0      | 0      | 69    | 2.7      |
| 28-Sep | 21.25  | 1      | 33      | 15     | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0  | 0      | 1      | 50    | 2.4      |
| 29-Sep | 17.25  | 0      | 14      | 20     | 0      | 0      | 0      | 2       | 0      | 0      | 0      | 0  | 0      | 0      | 36    | 2.1      |
| 30-Sep | 24.17  | 0      | 17      | 34     | 1      | 0      | 0      | 1       | 0      | 1      | 2      | 0  | 0      | 1      | 57    | 2.4      |
| 1-Oct  | 25.25  | 1      | 26      | 29     | 0      | 0      | 0      | 5       | 0      | 0      | 1      | 1  | 0      | 0      | 63    | 2.5      |
| 2-Oct  | 24.82  | 0      | 21      | 15     | 0      | 0      | 0      | 5       | 0      | 0      | 0      | 0  | 0      | 1      | 42    | 1.7      |
| 3-Oct  | 17.00  | 0      | 14      | 13     | 0      | 0      | 0      | 0       | 0      | 0      | 1      | 0  | 0      | 0      | 28    | 1.6      |
| 4-Oct  | 25.17  | 2      | 8       | 8      | 0      | 0      | 0      | 1       | 0      | 0      | 0      | 0  | 0      | 0      | 19    | 0.8      |
| 5-Oct  | 24.00  | 0      | 21      | 27     | 0      | 0      | 1      | 3       | 0      | 0      | 0      | 0  | 0      | 0      | 52    | 2.2      |
| 6-Oct  | 8.25   | 0      | 12      | 15     | 0      | 0      | 1      | 2       | 0      | 0      | 0      | 0  | 0      | 0      | 30    | 3.6      |
| 7-Oct  | 25.25  | 0      | 16      | 10     | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0  | 0      | 1      | 27    | 1.1      |
| 8-Oct  | 25.50  | 0      | 10      | 7      | 0      | 0      | 0      | 2       | 0      | 0      | 4      | 1  | 0      | 0      | 24    | 0.9      |
| 9-Oct  | 25.50  | 0      | 8       | 6      | 0      | 0      | 0      | 2       | 0      | 0      | 1      | 0  | 0      | 0      | 17    | 0.7      |
| 10-Oct | 24.75  | 0      | 5       | 3      | 0      | 0      | 0      | 0       | 0      | 0      | 1      | 1  | 0      | 0      | 10    | 0.4      |
| 11-Oct | 25.33  | 0      | 13      | 4      | 0      | 0      | 0      | 1       | 0      | 0      | 0      | 1  | 1      | 0      | 20    | 0.8      |
| 12-Oct | 20.00  | 0      | 7       | 1      | 1      | 0      | 0      | 0       | 0      | 0      | 0      | 0  | 0      | 0      | 9     | 0.5      |
| 13-Oct | 10.25  | 0      | 6       | 4      | 0      | 0      | 0      | 4       | 0      | 0      | 0      | 0  | 0      | 0      | 14    | 1.4      |
| 14-Oct | 24.75  | 1      | 10      | 0      | 1      | 0      | 0      | 1       | 0      | 0      | 0      | 0  | 0      | 0      | 13    | 0.5      |
| 15-Oct | 20.82  | 0      | 13      | 5      | 0      | 0      | 0      | 2       | 0      | 2      | 0      | 1  | 0      | 0      | 23    | 1.1      |
| l6-Oct | 24.75  | 1      | 5       | 3      | 1      | 0      | 0      | 0       | 0      | 1      | 0      | 0  | 0      | 0      | 11    | 0.4      |
| 17-Oct | 16.66  | 0<br>0 | 1<br>2  | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0       | 0      | 0<br>0 | 0      | 0  | 0<br>0 | 0<br>0 | 1     | 0.1      |
| 18-Oct | 8.50   | 0      | 2<br>10 |        |        | 0      |        | 1<br>0  | 0<br>0 | 0      | 0<br>0 | 0  | 0      | 0      | 3     | 0.4      |
| 19-Oct | 21.75  |        |         | 2      | 1      |        | 0      |         |        |        |        | 2  |        |        | 15    | 0.7      |
| 20-Oct | 16.25  | 0      | 10      | 4      | 0      | 0      | 0      | 3       | 0      | 1      | 0      | 0  | 0      | 0      | 18    | 1.1      |
| 21-Oct | 16.00  | 0      | 8       | 0      | 2      | 0      | 0      | 1       | 0      | 0      | 0      | 2  | 0      | 0      | 13    | 0.8      |
| 22-Oct | 23.25  | 0      | 6       | 0      | 1      | 0      | 0      | 1       | 0      | 0      | 0      | 0  | 0      | 0      | 8     | 0.3      |
| 23-Oct | 15.20  | 0      | 6       | 1      | 2      | 0      | 0      | 1       | 0      | 0      | 0      | 1  | 0      | 0      | 11    | 0.7      |
| 24-Oct | 5.75   | 0      | 0       | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0  | 0      | 0      | 0     | 0        |
| 25-Oct | 7.50   | 0      | 3       | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0  | 0      | 0      | 3     | 0.4      |
| Total  | 956.92 | 6      | 635     | 510    | 10     | 1      | 3      | 56      | 0      | 7      | 37     | 12 | 5      | 13     | 1295  | 1.       |
|        |        |        |         |        |        |        |        |         |        |        |        |    |        |        |       |          |

Appendix D. Daily trapping effort and capture totals of migrating raptors by species in the Manzano Mountains, NM: 2002.

<sup>1</sup> See Appendix A for explanation of species codes.

|                                 | 1990   | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997     | 1998    | 1999   | 2000   | 2001    | 2002   | Mean   | TOTAL  |
|---------------------------------|--------|--------|--------|--------|--------|--------|--------|----------|---------|--------|--------|---------|--------|--------|--------|
| Start date                      | 28-Aug | 5-Sep  | 31-Aug | 3-Sep  | 1-Sep  | 4-Sep  | 2-Sep  | 31-Aug   | 29-Aug  | 31-Aug | 2-Sep  | 1-Sep   | 3-Sep  | 31-Aug |        |
| End date                        | 27-Oct | 29-Oct | 30-Oct | 24-Oct | 25-Oct | 31-Oct | 19-Oct | 28-Oct   | 29-Oct  | 16-Oct | 27-Oct | 25-Oct  | 25-Oct | 24-Oct |        |
| Blinds in operation             | 1      | 3      | 3      | 3      | 3      | 4      | 4      | 4        | 3       | 3      | 3      | 3       | 3      | 3.1    |        |
| Trapping days                   | 47     | 54     | 57     | 50     | 48     | 53     | 45     | 54       | 58      | 46     | 50     | 55      | 51     | 51.4   |        |
| Station days                    | 47     | 95     | 131    | 120    | 121    | 136    | 132    | 151      | 165     | 94     | 119    | 145     | 131    | 122.1  |        |
| Station hours                   | 511    | 693    | 967    | 889    | 926    | 1041   | 1030   | 1211     | 1352.58 | 663.75 | 791.42 | 1036.65 | 956.92 | 928.4  |        |
| Captures / 100 hours            | 47.7   | 72.4   | 108.2  | 100.8  | 110.7  | 85.7   | 137.0  | 95.0     | 148.2   | 115.7  | 121.7  | 85.9    | 135.3  | 105.0  | 1364.4 |
| SPECIES                         |        |        |        |        |        |        | RAP    | TOR CAPT | URES    |        |        |         |        |        |        |
| Northern Harrier                | 1      | 2      | 2      | 3      | 9      | 2      | 1      | 8        | 14      | 0      | 5      | 7       | 6      | 4.6    | 60     |
| Sharp-shinned Hawk              | 124    | 262    | 589    | 430    | 502    | 493    | 778    | 612      | 987     | 321    | 495    | 426     | 635    | 511.8  | 6654   |
| Cooper's Hawk                   | 95     | 195    | 335    | 374    | 353    | 310    | 460    | 427      | 772     | 323    | 330    | 337     | 510    | 370.8  | 4821   |
| Northern Goshawk                | 1      | 7      | 6      | 6      | 7      | 1      | 5      | 3        | 6       | 6      | 16     | 1       | 10     | 5.8    | 75     |
| Broad-winged Hawk               | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 1       | 0      | 0      | 0       | 1      | 0.2    | 2      |
| Swainson's Hawk                 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 1       | 3      | 0.3    | 4      |
| Red-tailed Hawk                 | 8      | 18     | 61     | 55     | 83     | 50     | 50     | 46       | 112     | 56     | 76     | 39      | 56     | 54.6   | 710    |
| Zone-tailed Hawk                | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 1       | 0      | 0      | 0       | 0      | 0.1    | 1      |
| Golden Eagle                    | 1      | 3      | 4      | 4      | 4      | 4      | 6      | 4        | 5       | 2      | 4      | 5       | 7      | 4.1    | 53     |
| American Kestrel                | 10     | 13     | 42     | 14     | 59     | 28     | 92     | 32       | 75      | 44     | 25     | 56      | 37     | 40.5   | 527    |
| Merlin                          | 1      | 0      | 2      | 4      | 1      | 1      | 11     | 6        | 7       | 2      | 8      | 2       | 12     | 4.4    | 57     |
| Prairie Falcon                  | 1      | 1      | 3      | 5      | 3      | 1      | 3      | 5        | 13      | 6      | 3      | 7       | 5      | 4.3    | 56     |
| Peregrine Falcon                | 2      | 1      | 2      | 1      | 4      | 2      | 5      | 7        | 12      | 8      | 1      | 10      | 13     | 5.2    | 68     |
| All Species                     | 244    | 502    | 1046   | 896    | 1025   | 892    | 1411   | 1150     | 2005    | 768    | 963    | 891     | 1295   | 1006.8 | 13088  |
| Recaptures <sup>1</sup>         | 0      | 0      | 1      | 1      | 2      | 2      | 1      | 2        | 4       | 4      | 3      | 2       | 3      | 1.9    | 25     |
| Foreign recaptures <sup>2</sup> | 2      | 1      | 1      | 1      | 2      | 0      | 5      | 1        | 2       | 2      | 0      | 0       | 4      | 1.6    | 21     |
| Foreign encounters <sup>3</sup> | 0      | 2      | 2      | 3      | 6      | 6      | 7      | 8        | 13      | 12     | 6      | 8       | 10     | 6.4    | 83     |

Appendix E. Annual trapping and banding effort and capture totals of migrating raptors by species in the Manzano Mountains, NM: 1990–2002.

<sup>1</sup> Recaptures in the Manzanos of birds originally banded in the Manzanos.

<sup>2</sup> Recaptures in the Manzanos of birds originally banded elsewhere.

<sup>3</sup> Birds originally banded in the Manzanos and subsequently encountered elsewhere.